Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38667640

RESUMO

Developing gelled environmentally friendly dispersions in oil media is a hot topic for many applications. This study aimed to investigate the production of electrospun cellulose triacetate (CTA) nanofibers and to explore their potential application as a thickening agent for castor oil. The key factors in the electrospinning process, including the intrinsic properties of CTA solutions in methylene chloride (DCM)/ethanol (EtOH), such us the shear viscosity, surface tension, and electrical conductivity, were systematically studied. The impact of the CTA fiber concentration and the ratio of DCM/EtOH on the rheological properties of the gel-like dispersions in castor oil was then investigated. It was found that dispersions with a non-Newtonian response and above a critical concentration (5 wt.%), corresponding to approximately 2-2.5 times the entanglement concentration, are required to produce defect-free nanofibers. The average fiber diameter increased with CTA concentration. Further, the morphology and texture of the electrospun nanofibers are influenced by the ratio of solvents used. The rheological properties of dispersions are strongly influenced by the concentration and surface properties of nanofibers, such as their smooth or porous textures, which allow their modulation. Compared to other commonly used thickeners, such as synthetic polymers and metal soaps, CTA electrospun nanofibers have a much higher oil structuring capacity. This work illustrated the potential of using CTA nanofibers as the foundation for fabricating gel-like dispersions in oil media, and thus exerting hierarchical control of rheological properties through the use of a nanoscale fabrication technique.

2.
Polymers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276692

RESUMO

The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness. A stainless-steel tube (AISI 316L) was laser-cut, electropolished, and dip-coated in a polylactic acid (PLA) solution whilst changing the process parameters. The samples were characterized to examine the coating's uniformity, thickness, surface roughness, weight, and chemical composition. FTIR and Raman investigations indicated the presence of PLA on the stent's surface, the chemical stability of PLA during the coating process, and the absence of residual chloroform in the coatings. Additionally, the water contact angle was measured to determine the hydrophilicity of the coating. Our results indicate that, when using entry and withdrawal speeds of 500 mm min-1 and a 15 s immersion time, a uniform coating thickness was achieved throughout the tube and in the stent with an average thickness of 7.8 µm.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887952

RESUMO

Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.

4.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37688159

RESUMO

Using cytotoxic reducing and stabilizing agents in the synthesis of gold nanoparticles (AuNPs) limits their use in biomedical applications. One strategy to overcome this problem is using "green" synthesis methodologies using polysaccharides. In the present study, we propose a green methodology for synthetizing AuNPs with mesquite gum (MG) as a reducing agent and steric stabilizer in Gold(III) chloride trihydrate aqueous solutions to obtain biocompatible nanoparticles that can be used for biomedical applications. Through this method, AuNPs can be produced without using elevated temperatures or pressures. For synthetizing gold nanoparticles coated with mesquite gum (AuNPs@MG), Gold(III) chloride trihydrate was used as a precursor, and mesquite gum was used as a stabilizing and reducing agent. The AuNPs obtained were characterized using UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, scanning transmission electron microscopy, and FT-IR spectroscopy. The stability in biological media (phosphate buffer solution), cytotoxicity (MTT assay, hematoxylin, and eosin staining), and hemocompatibility (Hemolysis assay) were measured at different concentrations and exposure times. The results showed the successful synthesis of AuNPs@MG with sizes ranging from 3 to 30 nm and a zeta potential of -31 mV. The AuNPs@MG showed good colloidal stability in PBS (pH 7.4) for up to 24 h. Finally, cytotoxicity assays showed no changes in cell metabolism or cell morphology. These results suggest that these gold nanoparticles have potential biomedical applications because of their low cytotoxicity and hemotoxicity and improved stability at a physiological pH.

5.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177048

RESUMO

With the growing population, access to clean water is one of the 21st-century world's challenges. For this reason, different strategies to reduce pollutants in water using renewable energy sources should be exploited. Photocatalysts with extended visible light harvesting are an interesting route to degrade harmful molecules utilized in plastics, as is the case of Bisphenol A (BPA). This work uses a microwave-assisted route for the synthesis of two photocatalysts (BiOI and Bi2MoO6). Then, BiOI/Bi2MoO6 heterostructures of varied ratios were produced using the same synthetic routes. The BiOI/Bi2MoO6 with a flower-like shape exhibited high photocatalytic activity for BPA degradation compared to the individual BiOI and Bi2MoO6. The high photocatalytic activity was attributed to the matching electronic band structures and the interfacial contact between BiOI and Bi2MoO6, which could enhance the separation of photo-generated charges. Electrochemical, optical, structural, and chemical characterization demonstrated that it forms a BiOI/Bi2MoO6 p-n heterojunction. The free radical scavenging studies showed that superoxide radicals (O2•-) and holes (h+) were the main reactive species, while hydroxyl radical (•OH) generation was negligible during the photocatalytic degradation of BPA. The results can potentiate the application of the microwave synthesis of photocatalytic materials.

6.
Water Res ; 231: 119608, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709564

RESUMO

The use of surfactants represents a viable strategy to boost the removal yield of Dense Non-Aqueous Phase Liquids (DNAPLs) from groundwater and to shorten the operational timing of the remediation process. Surfactants, in general, help in reducing the interfacial tension at the DNAPL/water interface and enhance the solubility of the pollutant in the water phase through the formation of dispersed systems, such as micelles and emulsions. In this paper, we show that a suitable choice of a surfactant, in this case belonging to the bio-degradable class of ethoxylated alcohols, allows for the formation of hydrodynamic interfacial instabilities that further enhances the dissolution rate of the organic pollutant into the water phase. In a stratified configuration (denser organic phase at the bottom and lighter water phase on top), the instabilities appear as upward-pointing fingers that originate from the inversion of the local density at the interface. This inversion stems from the synergetic coupling of two effects promoted by the ethoxylated surfactant: i) the enhanced co-solubility of the DNAPL into the water (and viceversa), and (ii) the differential diffusion of the DNAPL and the surfactant in the aqueous phase. By dissolving into the DNAPL, the surfactant also reduces locally the surface tension at the liquid-liquid interface, thereby inducing transversal Marangoni flows. In our work, we carefully evaluated the effects of the concentration of different surfactants (two different ethoxylated alcohols, sodium dodecylsulphate, cetyltrimethyl ammonium bromide, N-tetradecyl-N, N-dimethylamine oxide and bis(2-ethylhexyl) sulfosuccinate sodium salt) on the onset of the instabilities in 3 different DNAPLs/water stratifications, namely chloroform, trichloroethylene and tetrachloroethylene, with a special emphasis on the trichloroethylene/water system. By means of a theoretical model and nonlinear simulations, supported by surface tension, density and diffusivity measurements, we could provide a solid explanation to the observed phenomena and we found that the type of the dispersed system, the solubility of the DNAPL into the water phase, the solubility of the surfactant in the organic phase, as well as the relative diffusion and density of the surfactant and the DNAPL in the aqueous phase, are all key parameters for the onset of the instabilities. These results can be exploited in the most common remediation techniques.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Solubilidade , Poluentes Químicos da Água/análise , Álcoois , Tensoativos , Sódio
7.
Nanotechnology ; 33(38)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700703

RESUMO

In the present work we report a simple, fast, reproducible and cheap methodology for surface enhanced Raman spectroscopy (SERS) substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in attomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.

8.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875636

RESUMO

In the present work, we report a simple, fast, reproducible and cheap methodology for SERS substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in zeptomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.

9.
Life (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34833063

RESUMO

Pancreatic cancer is the most common lethal tumor in America. This lethality is related to limited treatment options. Conventional treatments involve the non-specific use of chemotherapeutical agents such as 5-FU, capecitabine, gemcitabine, paclitaxel, cisplatin, oxaliplatin, or irinotecan, which produce several side effects. This review focuses on the use of targeted nanoparticles, such as metallic nanoparticles, polymeric nanoparticles, liposomes, micelles, and carbon nanotubes as an alternative to standard treatment for pancreatic cancer. The principal objective of nanoparticles is reduction of the side effects that conventional treatments produce, mostly because of their non-specificity. Several molecular markers of pancreatic cancer cells have been studied to target nanoparticles and improve current treatment. Therefore, properly functionalized nanoparticles with specific aptamers or antibodies can be used to recognize pancreatic cancer cells. Once cancer is recognized, these nanoparticles can attack the tumor by drug delivery, gene therapy, or hyperthermia.

10.
Polymers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451303

RESUMO

In the present study, the modification of branched polyethyleneimine (b-PEI) was carried out using mesquite gum (MG) to improve its hemocompatibility to be used in biomedical applications. In the copolymer synthesis process (carboxymethylated mesquite gum grafted polyethyleneimine copolymer (CBX-MG-PEI), an MG carboxymethylation reaction was initially carried out (carboxymethylated mesquite gum (CBX-MG). Subsequently, the functionalization between CBX-MG and b-PEI was carried out using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as crosslinking agents. The synthesis products were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Thermogravimetric analysis showed that CBX-MG and CBX-MG-PEI presented a lower decomposition temperature than MG. The CBX-MG-PEI has a high buffer capacity in the pH range of 4 to 7, similar to the b-PEI. In addition, the CBX-MG-PEI showed an improvement in hemocompatibility in comparison with the b-PEI. The results showed a non-hemolytic property at doses lower than 0.1 µg/mL (CBX-MG-PEI). These results allow us to propose that this copolymer be used in transfection, polymeric nanoparticles, and biomaterials due to its physicochemical and hemocompatibility properties.

11.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513783

RESUMO

Microspheres have been proposed for different medical applications, such as the delivery of therapeutic proteins. The first step, before evaluating the functionality of a protein delivery system, is to evaluate their biological safety. In this work, we developed chitosan/Tween 80 microspheres loaded with magnetite nanoparticles and evaluated cell damage. The formation and physical-chemical properties of the microspheres were determined by FT-IR, Raman, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and SEM. Cell damage was evaluated by a full set of in vitro assays using a non-cancerous cell line, human erythrocytes, and human lymphocytes. At the same time, to know if these microspheres can load proteins over their surface, bovine serum albumin (BSA) immobilization was measured. Results showed 7 nm magnetite nanoparticles loaded into chitosan/Tween 80 microspheres with average sizes of 1.431 µm. At concentrations from 1 to 100 µg/mL, there was no evidence of changes in mitochondrial metabolism, cell morphology, membrane rupture, cell cycle, nor sister chromatid exchange formation. For each microgram of microspheres 1.8 µg of BSA was immobilized. The result provides the fundamental understanding of the in vitro biological behavior, and safety, of developed microspheres. Additionally, this set of assays can be helpful for researchers to evaluate different nano and microparticles.

12.
Phys Chem Chem Phys ; 22(40): 23276-23285, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33030486

RESUMO

Ionic self-assembly is a simple yet powerful method to obtain robust nanostructures. Herewith, we use mixtures of oppositely-charged porphyrins that can act as mesogens to form chromonic liquid crystals in water, i.e., molecular stacks with orientational (nematic) or positional (hexagonal) order. Electrostatic locking coupled with π-π interactions between aromatic groups within the stacks, together with inter-stack hydrogen bonding induce formation of all-organic crystalline nanofibers with high aspect ratio (a few tenths of nanometers in width but several tenths of micrometers in length) and that display branching. The nanofibers prepared from metal-free porphyrin units feature interesting optical properties, including an absorption spectrum that is different from the simple sum of the individual spectra of the components, which is attributed to a striking aggregation-induced chromism. When in contact with some polar organic solvents the materials become fluorescent, as a result of disaggregation. In a proof-of-concept, the obtained self-assembled one-dimensional (1D) materials were carbonized (yield ca. 60%) to produce nitrogen-doped carbon nanofibers that can be used as active electrode materials for energy storage applications.

13.
Nanotechnology ; 31(46): 465605, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32759478

RESUMO

Plasmonic bimetallic Ag-Cu nanodendrites were synthesized by an electrodeposition process and their potential as surface-enhanced Raman scattering (SERS) substrates was studied. We demonstrated a facile and efficient way for the preparation of highly sensitive SERS substrates. The electrodeposition time was an important parameter in the formation of Ag-Cu dendrites onto the Al sheet. The Ag-Cu dendrites showed an excellent response detecting Rhodamine 6 G at ultra-low concentrations such as 1 × 10-15 mol l-1. This Ag-Cu substrate possesses an excellent SERS activity and it could be used for the detection of molecules at trace level. This electrodeposition process could be extended for the fabrication of other plasmonic bimetallic dendrites.

14.
Nanotechnology ; 31(42): 425601, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32575097

RESUMO

Plasmonic superstructures may concentrate hot spots both on the external surface and within the inner gaps of the assembly. However, these materials are usually obtained by two-steps procedures from synthesis of plasmonic nanoparticles to their 3D assembly. The interconnected nano-network of water and oil channels in a bicontinuous microemulsion (BµE) may act as a preorganized reaction system giving reticulated materials. In this work, a silver hierarchical superstructure (HSS-AgCt) was obtained in the water channels of a BµE in a one-pot procedure. The characterization of the morphology and crystalline structure revealed that this superstructure is composed of silver nanoparticles embedded in polymeric silver citrate forming a 3D mesh of interconnected fibers with mean width of 30 nm. The aging of HSS-AgCt in the BµE allowed the degradation of the citrate fibers giving rise to interconnected spherical silver nanoparticles (HSS-Ag) of 8 nm as measured from TEM images. Rhodamine 6-G was detected by SERS up to 10-12 M with an analytical enhancement factor of 109 for both materials using a 633 nm laser operating at 0.85 mW (5% of the nominal power). These results introduce a novel route to obtain highly sensitive SERS substrates in one-pot procedures by using BµE as a nanoreactor and template.

15.
Biomicrofluidics ; 14(1): 014111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32038740

RESUMO

In this work, we developed a microfluidic system for immunoassays where we combined the use of magnetic nanoparticles as immunosupport, a microfluidic magnetic trap, and a fluorogenic substrate in continuous flow for detection which, together with the optimization of the functionalization of surfaces to minimize nonspecific interactions, resulted in a detection limit in the order of femtomolar and a total assay time of 40 min for antibiotin antibody detection. A magnetic trap made of carbonyl-iron microparticles packaged inside a 200 µ m square microchannel was used to immobilize and concentrate nanoparticles. We functionalized the surface of the iron microparticles with a silica-polyethylene glycol (PEG) shell to avoid corrosion and unspecific protein binding. A new one-step method was developed to coat acrylic microchannels with an organofunctional silane functionalized with PEG to minimize unspecific binding. A model immunoassay was performed using nanoparticles decorated with biotin to capture antibiotin rabbit Immunoglobulin G (IgG) as target primary antibody. The detection was made using antirabbit IgG labeled with the enzyme alkaline phosphatase as a secondary antibody, and we measured fluorescence with a fluorescence microscope. All steps of the immunoassay were performed inside the chip. A calibration curve was obtained in which a detection limit of 8 pg/ml of antibiotin antibody was quantified. The simplicity of the device and the fact that it is made of acrylic, which is compatible with mass production, make it ideal for Point-Of-Care applications.

16.
Microsyst Nanoeng ; 6: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567624

RESUMO

Glassy carbon nanofibers (GCNFs) are considered promising candidates for the fabrication of nanosensors for biosensing applications. Importantly, in part due to their great stability, carbon electrodes with sub-10 nm nanogaps represent an attractive platform for probing the electrical characteristics of molecules. The fabrication of sub-10 nm nanogap electrodes in these GCNFs, which is achieved by electrically stimulating the fibers until they break, was previously found to require fibers shorter than 2 µm; however, this process is generally hampered by the limitations inherent to photolithographic methods. In this work, to obtain nanogaps on the order of 10 nm without the need for sub-2 µm GCNFs, we employed a fabrication strategy in which the fibers were gradually thinned down by continuously monitoring the changes in the electrical resistance of the fiber and adjusting the applied voltage accordingly. To further reduce the nanogap size, we studied the mechanism behind the thinning and eventual breakdown of the suspended GCNFs by controlling the environmental conditions and pressure during the experiment. Following this approach, which includes performing the experiments in a high-vacuum chamber after a series of carbon dioxide (CO2) purging cycles, nanogaps on the order of 10 nm were produced in suspended GCNFs 52 µm in length, much longer than the ~2 µm GCNFs needed to produce such small gaps without the procedure employed in this work. Furthermore, the electrodes showed no apparent change in their shape or nanogap width after being stored at room temperature for approximately 6 months.

17.
J Environ Sci (China) ; 74: 32-49, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30340673

RESUMO

During the winter period (January-March 2016), the total suspended particles (TSP) and particulate matter smaller than 2.5µm (PM2.5) were characterized by the application of various analytical techniques in four zones of the Metropolitan Area of Monterrey in Mexico. To evaluate the seasonal variation of some elements in the particulate matter, the results of this study were compared with those obtained during the summer season (July-September 2015). The speciation of the C1s signal by X-ray photoelectron spectroscopy revealed the contribution of aromatic and aliphatic hydrocarbons as the main components in both seasons. Conversely, carboxylic groups associated with biogenic emissions were detected only in winter. The percentages of SO42- ions were lower in winter, possibly caused by the decrease in the solar radiation, and relative humidity recorded. The results of the ICP analysis revealed that Fe, Zn and Cu were the most abundant metals in both TSP and PM2.5 in the two seasons. There were significant seasonal variations for concentrations of As, Ni and Zn in the urban area and for Fe, As, Cd, Ni and Zn in the industrial zone. This was attributed to the greater burning of fuels as well as to an increase in vehicular traffic, the effect of thermal inversion and changes in some meteorological parameters. The results of the sequential microanalysis by Raman spectroscopy and SEM/EDS allowed observation of deposits of carbonaceous material on the particles and to perform the speciation of particles rich in Fe and Pb, which helped infer their possible emission sources.


Assuntos
Monitoramento Ambiental , Material Particulado/química , Estações do Ano , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Análise Espectral Raman
18.
Mol Med Rep ; 17(1): 1413-1420, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29257213

RESUMO

Due to the high toxicity and side effects of the use of traditional chemotherapy in cancer, scientists are working on the development of alternative therapeutic technologies. An example of this is the use of death­induced gene therapy. This therapy consists of the killing of tumor cells via transfection with plasmid DNA (pDNA) that contains a gene which produces a protein that results in the apoptosis of cancerous cells. The cell death is caused by the direct activation of apoptosis (apoptosis­induced gene therapy) or by the protein toxic effects (toxin­induced gene therapy). The introduction of pDNA into the tumor cells has been a challenge for the development of this therapy. The most recent implementation of gene vectors is the use of polymeric or inorganic nanoparticles, which have biological and physicochemical properties (shape, size, surface charge, water interaction and biodegradation rate) that allow them to carry the pDNA into the tumor cell. Furthermore, nanoparticles may be functionalized with specific molecules for the recognition of molecular markers on the surface of tumor cells. The binding between the nanoparticle and the tumor cell induces specific endocytosis, avoiding toxicity in healthy cells. Currently, there are no clinical protocols approved for the use of nanoparticles in death­induced gene therapy. There are still various challenges in the design of the perfect transfection vector, however nanoparticles have been demonstrated to be a suitable candidate. This review describes the role of nanoparticles used for pDNA transfection and key aspects for their use in death­induced gene therapy.


Assuntos
DNA/uso terapêutico , Terapia Genética/métodos , Nanopartículas/química , Neoplasias/terapia , Plasmídeos/uso terapêutico , Transfecção/métodos , Animais , DNA/administração & dosagem , DNA/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Nanomedicina/métodos , Neoplasias/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética
19.
Materials (Basel) ; 9(6)2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28773602

RESUMO

Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

20.
Materials (Basel) ; 9(10)2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28773938

RESUMO

The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...