Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34465613

RESUMO

Striatal activity is necessary to initiate and execute sequences of actions. The main excitatory input to the striatum comes from the cortex. While it is hypothesized that motor and premotor cortico-striatal projections are important to guide striatal activity during the execution of sequences of actions, technical limitations have made this challenging to address. Here, we implemented a task in mice that allows for the study of different moments to execute a serial order sequence consisting of two subsequences of actions. Using this task, we performed electrophysiological recordings in the premotor (M2) and primary motor (M1) cortices, and state-dependent optogenetic inhibitions of their cortico-striatal projections. We show that while both M2 and M1 contain activity modulations related to the execution of self-paced sequences, mainly, the premotor cortico-striatal projections contribute to the proper execution/structuring of these sequences.


Assuntos
Corpo Estriado , Optogenética , Animais , Córtex Cerebral , Camundongos , Neostriado
2.
Neuron ; 100(3): 739-752.e5, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30344045

RESUMO

One of the main inputs driving striatal activity is the thalamostriatal projection. While the hypothesis postulating that the different thalamostriatal projections contribute differentially to shape the functions of the striatum is largely accepted, existing technical limitations have hampered efforts to prove it. Here, through the use of electrophysiological recordings of antidromically photo-identified thalamostriatal neurons and the optogenetic inhibition of thalamostriatal terminals, we identify that the thalamostriatal projections from the parafascicular and the ventroposterior regions of the thalamus contribute to the smooth initiation and the appropriate execution of a sequence of movements. Our results support a model in which both thalamostriatal projections have specific contributions to the initiation and execution of sequences, highlighting the specific contribution of the ventroposterior thalamostriatal connection for the repetition of actions.


Assuntos
Corpo Estriado/fisiologia , Intenção , Movimento/fisiologia , Rede Nervosa/fisiologia , Tálamo/fisiologia , Animais , Corpo Estriado/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Optogenética/métodos , Tálamo/química
3.
Neurosci Lett ; 631: 104-108, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542344

RESUMO

Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2µg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system.


Assuntos
Ingestão de Alimentos , Endocanabinoides/fisiologia , Região Hipotalâmica Lateral/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Glicina/administração & dosagem , Glicina/análogos & derivados , Região Hipotalâmica Lateral/efeitos dos fármacos , Lactonas/administração & dosagem , Lipase Lipoproteica/antagonistas & inibidores , Masculino , Orlistate , Fenilacetatos/administração & dosagem , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/agonistas , Receptores de Glutamato Metabotrópico/agonistas
4.
Behav Pharmacol ; 27(4): 393-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292188

RESUMO

To investigate the role of GPR55 receptors, which are expressed in human and rat striatum (a structure that regulates procedural memory), Wistar rats received five training sessions (10 trials/session, 1 session/day) to solve a T-maze paradigm. From these data, we constructed learning curves following pharmacological manipulation of GPR55. Five minutes before each session, animals received bilateral intradorsolateral striatum injections of noladin-ether (3.1 nmol/l; endogenous agonist of GPR55 and CB1 receptors), CID16020036 (5.6 nmol/l; GPR55 antagonist), AM251 (5.6 nmol/l; CB1 antagonist), or a combination of noladin-ether with each antagonist. Noladin-ether by itself induced no significant changes in the learning curve. Nevertheless, while simultaneously blocking CB1 receptors (with AM251), noladin-ether improved acquisition. In contrast, while simultaneously blocking GPR55 (with CID16020036), noladin-ether weakened acquisition. CID16020036 by itself impaired learning, whereas AM251 by itself reduced the efficiency in the task. There were no differences between groups in the latency to reach the arms from the starting point; thus, no motor coordination impairments interfered with this task. These results strongly suggest a role of GPR55 in procedural memory and constitute the first evidence indicating that this receptor regulates cognitive processes.


Assuntos
Glicerídeos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Compostos Azabicíclicos/farmacologia , Benzoatos/farmacologia , Cognição/fisiologia , Corpo Estriado , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA