Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 192: 107986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142794

RESUMO

Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.


Assuntos
Artrópodes , Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Artrópodes/genética , Genoma/genética , Genômica
2.
Insects ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132578

RESUMO

Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.

3.
Mol Ecol Resour ; 22(1): 375-390, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34268885

RESUMO

Here, we present the chromosome-level genome assembly of Dysdera silvatica Schmidt, 1981, a nocturnal ground-dwelling spider endemic from the Canary Islands. The genus Dysdera has undergone a remarkable diversification in this archipelago mostly associated with shifts in the level of trophic specialization, becoming an excellent model to study the genomic drivers of adaptive radiations. The new assembly (1.37 Gb; scaffold N50 of 174.2 Mb), was performed using the chromosome conformation capture scaffolding technique, represents a continuity improvement of more than 4500 times with respect to the previous version. The seven largest scaffolds or pseudochromosomes, which cover 87% of the total assembly size, probably correspond with the seven chromosomes of the karyotype of this species, including a characteristic large X chromosome. To illustrate the value of this new resource we performed a comprehensive analysis of the two major arthropod chemoreceptor gene families (i.e., gustatory and ionotropic receptors). We identified 545 chemoreceptor sequences distributed across all pseudochromosomes, with a notable underrepresentation in the X chromosome. At least 54% of them localize in 83 genomic clusters with a significantly lower evolutionary distances between them than the average of the family, suggesting a recent origin of many of them. This chromosome-level assembly is the first high-quality genome representative of the Synspermiata clade, and just the third among spiders, representing a new valuable resource to gain insights into the structure and organization of chelicerate genomes, including the role that structural variants, repetitive elements and large gene families played in the extraordinary biology of spiders.


Assuntos
Aracnídeos , Aranhas , Animais , Cromossomos , Genômica , Humanos , Espanha , Aranhas/genética
4.
Biol Lett ; 17(12): 20210533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932923

RESUMO

Evolution of vertebrate endemics in oceanic islands follows a predictable pattern, known as the island rule, according to which gigantism arises in originally small-sized species and dwarfism in large ones. Species of extinct insular giant rodents are known from all over the world. In the Canary Islands, two examples of giant rats, †Canariomys bravoi and †Canariomys tamarani, endemic to Tenerife and Gran Canaria, respectively, disappeared soon after human settlement. The highly derived morphological features of these insular endemic rodents hamper the reconstruction of their evolutionary histories. We have retrieved partial nuclear and mitochondrial data from †C. bravoi and used this information to explore its evolutionary affinities. The resulting dated phylogeny confidently places †C. bravoi within the African grass rat clade (Arvicanthis niloticus). The estimated divergence time, 650 000 years ago (95% higher posterior densities: 373 000-944 000), points toward an island colonization during the Günz-Mindel interglacial stage. †Canariomys bravoi ancestors would have reached the island via passive rafting and then underwent a yearly increase of mean body mass calculated between 0.0015 g and 0.0023 g; this corresponds to fast evolutionary rates (in darwins (d), ranging from 7.09 d to 2.78 d) that are well above those observed for non-insular mammals.


Assuntos
Filogenia , Animais , Ilhas , Ratos , Espanha
5.
Methods Enzymol ; 642: 1-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32828248

RESUMO

Identifying protein-coding genes from genome and transcriptome data is the first and one of the most important steps towards their comprehensive study. This chapter introduces both general procedures for sequence mining, and specific approaches for recognizing characteristic motives and chemical properties in soluble proteins potentially involved in arthropod chemical communication. We describe (i) the workflow to identify members of the OBP (Odorant-Binding Proteins) and CSP (Chemosensory Proteins) families in genomic and transcriptomic sequences using our recently developed bioinformatic solution, BITACORA, and (ii) the main further steps to visualize and to accurately annotate these genes in the Apollo genome browser. The success of further biochemical, functional and evolutionary analyses largely depends on the quality of these initial steps.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Perfilação da Expressão Gênica , Genoma , Humanos , Proteínas de Insetos/genética , Filogenia , Análise de Sequência
6.
Mol Biol Evol ; 37(12): 3601-3615, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32750126

RESUMO

Chemosensory perception is a fundamental biological process of particular relevance in basic and applied arthropod research. However, apart from insects, there is little knowledge of specific molecules involved in this system, which is restricted to a few taxa with uneven phylogenetic sampling across lineages. From an evolutionary perspective, onychophorans (velvet worms) and tardigrades (water bears) are of special interest since they represent the closest living relatives of arthropods, altogether comprising the Panarthropoda. To get insights into the evolutionary origin and diversification of the chemosensory gene repertoire in panarthropods, we sequenced the antenna- and head-specific transcriptomes of the velvet worm Euperipatoides rowelli and analyzed members of all major chemosensory families in representative genomes of onychophorans, tardigrades, and arthropods. Our results suggest that the NPC2 gene family was the only family encoding soluble proteins in the panarthropod ancestor and that onychophorans might have lost many arthropod-like chemoreceptors, including the highly conserved IR25a receptor of protostomes. On the other hand, the eutardigrade genomes lack genes encoding the DEG-ENaC and CD36-sensory neuron membrane proteins, the chemosensory members of which have been retained in arthropods; these losses might be related to lineage-specific adaptive strategies of tardigrades to survive extreme environmental conditions. Although the results of this study need to be further substantiated by an increased taxon sampling, our findings shed light on the diversification of chemosensory gene families in Panarthropoda and contribute to a better understanding of the evolution of animal chemical senses.


Assuntos
Proteínas de Artrópodes/genética , Células Quimiorreceptoras , Evolução Molecular , Invertebrados/genética , Família Multigênica , Animais , Feminino , Masculino
7.
Mol Ecol Resour ; 20(5): 1445-1452, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32492257

RESUMO

Gene annotation is a critical bottleneck in genomic research, especially for the comprehensive study of very large gene families in the genomes of nonmodel organisms. Despite the recent progress in automatic methods, state-of-the-art tools used for this task often produce inaccurate annotations, such as fused, chimeric, partial or even completely absent gene models for many family copies, errors that require considerable extra efforts to be corrected. Here we present bitacora, a bioinformatics solution that integrates popular sequence similarity-based search tools and Perl scripts to facilitate both the curation of these inaccurate annotations and the identification of previously undetected gene family copies directly in genomic DNA sequences. We tested the performance of bitacora in annotating the members of two chemosensory gene families with different repertoire size in seven available genome sequences, and compared its performance with that of augustus-ppx, a tool also designed to improve automatic annotations using a sequence similarity-based approach. Despite the relatively high fragmentation of some of these drafts, bitacora was able to improve the annotation of many members of these families and detected thousands of new chemoreceptors encoded in genome sequences. The program creates general feature format (GFF) files, with both curated and newly identified gene models, and FASTA files with the predicted proteins. These outputs can be easily integrated in genomic annotation editors, greatly facilitating subsequent manual annotation and downstream evolutionary analyses.


Assuntos
Biologia Computacional , Genoma , Anotação de Sequência Molecular , Família Multigênica , Software , Genômica
8.
Nat Commun ; 11(1): 2631, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457347

RESUMO

The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.


Assuntos
Adaptação Fisiológica/genética , Ephemeroptera/genética , Evolução Molecular , Asas de Animais , Animais , Ephemeroptera/classificação , Ephemeroptera/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Genoma de Inseto/genética , Brânquias , Insetos/classificação , Insetos/genética , Estágios do Ciclo de Vida/genética , Masculino , Filogenia
9.
Mol Biol Evol ; 37(9): 2584-2600, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359138

RESUMO

Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3' ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.


Assuntos
Dineínas do Axonema/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Família Multigênica , Animais , Feminino , Conversão Gênica , Masculino , Seleção Genética , Espermatozoides/fisiologia
10.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413142

RESUMO

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Variação Estrutural do Genoma , Microbiota , Seleção Genética , Aclimatação/genética , Altitude , Animais , Vírus de DNA , Drosophila melanogaster/virologia , Europa (Continente) , Genoma Mitocondrial , Haplótipos , Vírus de Insetos , Masculino , Filogeografia , Polimorfismo de Nucleotídeo Único
11.
Mol Phylogenet Evol ; 143: 106496, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31151789

RESUMO

The keystone of planarian taxonomy traditionally has been the anatomy of the copulatory apparatus. However, many planarian species comprise asexual fissiparous populations, with the fissiparous animals not developing a copulatory apparatus, thus precluding their morphological identification. Incorporation of molecular data into planarian systematics has been of great value, not only in the identification of fissiparous individuals but also as an additional source of information for determining species boundaries. Nevertheless, the discrepancy between morphological and molecular data has highlighted the need for extra sources of taxonomic information. Moreover, a recent study has pointed out that fissiparous reproduction may lead to high levels of intraindividual genetic diversity in planarians, which may mislead molecular analyses. In the present study we aim to test a new up-to-date integrative taxonomic procedure for planarians, including intraindividual genetic data and additional sources of taxonomic information, besides morphology and DNA, using Dugesia subtentaculata sensu lato as a model organism, a species with an intricate taxonomic history. First, we used three different methods for molecular species delimitation on single locus datasets, both with and without intraindividual information, for formulating Primary Species Hypotheses (PSHs). Subsequently, Secondary Species Hypotheses (SSHs) were formulated on the basis of three types of information: (1) a coalescent-based species delimitation method applied to multilocus data, (2) morphology of the copulatory apparatus, and (3) karyological metrics. This resulted in the delimitation of four morphologically cryptic species within the nominal species D. subtentaculata. Our results provide evidence that the analysis of intraindividual genetic data is essential for properly developing PSHs in planarians. Our study reveals also that karyological differentiation, rather than morphological differentiation, may play an important role in speciation processes in planarians, thus suggesting that the currently known diversity of the group could be highly underestimated.


Assuntos
Variação Genética , Cariótipo , Planárias/classificação , Planárias/genética , Animais , Água Doce , Filogenia , Planárias/anatomia & histologia , Reprodução Assexuada
12.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387975

RESUMO

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Assuntos
Colletotrichum/fisiologia , DNA Intergênico , Introgressão Genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Doenças das Plantas , Duplicação Gênica , Magnoliopsida/genética , Magnoliopsida/microbiologia , Persea/genética , Persea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
13.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430368

RESUMO

BACKGROUND: We present the draft genome sequence of Dysdera silvatica, a nocturnal ground-dwelling spider from a genus that has undergone a remarkable adaptive radiation in the Canary Islands. RESULTS: The draft assembly was obtained using short (Illumina) and long (PaciBio and Nanopore) sequencing reads. Our de novo assembly (1.36 Gb), which represents 80% of the genome size estimated by flow cytometry (1.7 Gb), is constituted by a high fraction of interspersed repetitive elements (53.8%). The assembly completeness, using BUSCO and core eukaryotic genes, ranges from 90% to 96%. Functional annotations based on both ab initio and evidence-based information (including D. silvatica RNA sequencing) yielded a total of 48,619 protein-coding sequences, of which 36,398 (74.9%) have the molecular hallmark of known protein domains, or sequence similarity with Swiss-Prot sequences. The D. silvatica assembly is the first representative of the superfamily Dysderoidea, and just the second available genome of Synspermiata, one of the major evolutionary lineages of the "true spiders" (Araneomorphae). CONCLUSIONS: Dysderoids, which are known for their numerous instances of adaptation to underground environments, include some of the few examples of trophic specialization within spiders and are excellent models for the study of cryptic female choice. This resource will be therefore useful as a starting point to study fundamental evolutionary and functional questions, including the molecular bases of the adaptation to extreme environments and ecological shifts, as well of the origin and evolution of relevant spider traits, such as the venom and silk.


Assuntos
Genoma , Genômica , Aranhas/classificação , Aranhas/genética , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Ontologia Genética , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Filogenia
14.
Mol Ecol ; 28(17): 4028-4045, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31359512

RESUMO

The coexistence of multiple eco-phenotypes in independently assembled communities makes island adaptive radiations the ideal framework to test convergence and parallelism in evolution. In the radiation of the spider genus Dysdera in the Canary Islands, species diversification occurs concomitant with repeated events of trophic specialization. These dietary shifts, to feed primarily on woodlice, are accompanied by modifications in morphology (mostly in the mouthparts), behaviour and nutritional physiology. To gain insight into the molecular basis of this adaptive radiation, we performed a comprehensive comparative transcriptome analysis of five Canary Island Dysdera endemics representing two evolutionary and geographically independent events of dietary specialization. After controlling for the potential confounding effects of hemiplasy, our differential gene expression and selective constraint analyses identified a number of genetic changes that could be associated with the repeated adaptations to specialized diet of woodlice, including some related to heavy metal detoxification and homeostasis, the metabolism of some important nutrients and venom toxins. Our results shed light on the genomic basis of an extraordinary case of dietary shift convergence associated with species diversification. We uncovered putative molecular substrates of convergent evolutionary changes at different hierarchical levels, including specific genes, genes with equivalent functions and even particular amino acid positions. This study improves our knowledge of rapid adaptive radiations and provides new insights into the predictability of evolution.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Dieta , Genoma , Aranhas/genética , Substituição de Aminoácidos/genética , Animais , Regulação da Expressão Gênica , Ontologia Genética , Geografia , Fenótipo , Filogenia , Seleção Genética , Espanha , Especificidade da Espécie
15.
Sci Rep ; 8(1): 18027, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575786

RESUMO

All tropically adapted humped cattle (Bos indicus or "zebu"), descend from a domestication process that took place >8,000 years ago in South Asia. Here we present an intercontinental survey of Y-chromosome diversity and a comprehensive reconstruction of male-lineage zebu cattle history and diversity patterns. Phylogenetic analysis revealed that all the zebu Y-chromosome haplotypes in our dataset group within three different lineages: Y3A, the most predominant and cosmopolitan lineage; Y3B, only observed in West Africa; and Y3C, predominant in South and Northeast India. The divergence times estimated for these three Zebu-specific lineages predate domestication. Coalescent demographic models support either de novo domestication of genetically divergent paternal lineages or more complex process including gene flow between wild and domestic animals. Our data suggest export of varied zebu lineages from domestication centres through time. The almost exclusive presence of Y3A haplotypes in East Africa is consistent with recent cattle restocking in this area. The cryptic presence of Y3B haplotypes in West Africa, found nowhere else, suggests that these haplotypes might represent the oldest zebu lineage introduced to Africa ca. 3,000 B.P. and subsequently replaced in most of the world. The informative ability of Interspersed Multilocus Microsatellites and Y-specific microsatellites to identify genetic structuring in cattle populations is confirmed.


Assuntos
Agricultura , Migração Animal/fisiologia , Bovinos/genética , Comércio , Domesticação , Variação Genética/fisiologia , África/epidemiologia , Agricultura/estatística & dados numéricos , Animais , Animais Domésticos , Ásia/epidemiologia , Bovinos/classificação , Comércio/estatística & dados numéricos , Fazendas/estatística & dados numéricos , Haplótipos , Masculino , Repetições de Microssatélites/genética , Filogenia , Dinâmica Populacional , Cromossomo Y/genética
16.
Genome Biol Evol ; 10(5): 1221-1236, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788250

RESUMO

Chemoreception is a widespread biological function that is essential for the survival, reproduction, and social communication of animals. Though the molecular mechanisms underlying chemoreception are relatively well known in insects, they are poorly studied in the other major arthropod lineages. Current availability of a number of chelicerate genomes constitutes a great opportunity to better characterize gene families involved in this important function in a lineage that emerged and colonized land independently of insects. At the same time, that offers new opportunities and challenges for the study of this interesting animal branch in many translational research areas. Here, we have performed a comprehensive comparative genomics study that explicitly considers the high fragmentation of available draft genomes and that for the first time included complete genome data that cover most of the chelicerate diversity. Our exhaustive searches exposed thousands of previously uncharacterized chemosensory sequences, most of them encoding members of the gustatory and ionotropic receptor families. The phylogenetic and gene turnover analyses of these sequences indicated that the whole-genome duplication events proposed for this subphylum would not explain the differences in the number of chemoreceptors observed across species. A constant and prolonged gene birth and death process, altered by episodic bursts of gene duplication yielding lineage-specific expansions, has contributed significantly to the extant chemosensory diversity in this group of animals. This study also provides valuable insights into the origin and functional diversification of other relevant chemosensory gene families different from receptors, such as odorant-binding proteins and other related molecules.


Assuntos
Proteínas de Artrópodes/genética , Artrópodes/genética , Evolução Molecular , Duplicação Gênica , Genômica , Animais , Artrópodes/classificação , Genoma/genética , Família Multigênica , Filogenia
17.
J Neurogenet ; 31(4): 307-319, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168413

RESUMO

Predicting the phenotypic impact of mutations is a central challenge in population and functional genetics. The analysis of DNA and amino acid sequence variation in an evolutionary context is a robust approach to infer the fitness effects of genetic variants. In this review, we discuss the most popular methods based on this approach, covering both theoretical and practical aspects, and introduce compelling software for predicting the functional effects of mutations, and to highlight functionally relevant nucleotide or amino acid candidate positions. Furthermore, we provide some examples of their application to Drosophila genes affecting significant aspects of the development, physiology and function of the nervous system.


Assuntos
Drosophila/genética , Estudos de Associação Genética , Variação Genética , Modelos Genéticos , Fenótipo , Animais , Polimorfismo Genético
18.
Mol Biol Evol ; 34(12): 3299-3302, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029172

RESUMO

We present version 6 of the DNA Sequence Polymorphism (DnaSP) software, a new version of the popular tool for performing exhaustive population genetic analyses on multiple sequence alignments. This major upgrade incorporates novel functionalities to analyze large data sets, such as those generated by high-throughput sequencing technologies. Among other features, DnaSP 6 implements: 1) modules for reading and analyzing data from genomic partitioning methods, such as RADseq or hybrid enrichment approaches, 2) faster methods scalable for high-throughput sequencing data, and 3) summary statistics for the analysis of multi-locus population genetics data. Furthermore, DnaSP 6 includes novel modules to perform single- and multi-locus coalescent simulations under a wide range of demographic scenarios. The DnaSP 6 program, with extensive documentation, is freely available at http://www.ub.edu/dnasp.


Assuntos
Polimorfismo Genético/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Sequência de Bases , Genética Populacional , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Interface Usuário-Computador
19.
Nat Ecol Evol ; 1(3): 59, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28812732

RESUMO

Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory.

20.
Genome Biol Evol ; 9(1): 178-196, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28028122

RESUMO

Unlike hexapods and vertebrates, in chelicerates, knowledge of the specific molecules involved in chemoreception comes exclusively from the comparative analysis of genome sequences. Indeed, the genomes of mites, ticks and spiders contain several genes encoding homologs of some insect membrane receptors and small soluble chemosensory proteins. Here, we conducted for the first time a comprehensive comparative RNA-Seq analysis across different body structures of a chelicerate: the nocturnal wandering hunter spider Dysdera silvatica Schmidt 1981. Specifically, we obtained the complete transcriptome of this species as well as the specific expression profile in the first pair of legs and the palps, which are thought to be the specific olfactory appendages in spiders, and in the remaining legs, which also have hairs that have been morphologically identified as chemosensory. We identified several ionotropic (Ir) and gustatory (Gr) receptor family members exclusively or differentially expressed across transcriptomes, some exhibiting a distinctive pattern in the putative olfactory appendages. Furthermore, these IRs were the only known olfactory receptors identified in such structures. These results, integrated with an extensive phylogenetic analysis across arthropods, uncover a specialization of the chemosensory gene repertoire across the body of D. silvatica and suggest that some IRs likely mediate olfactory signaling in chelicerates. Noticeably, we detected the expression of a gene family distantly related to insect odorant-binding proteins (OBPs), suggesting that this gene family is more ancient than previously believed, as well as the expression of an uncharacterized gene family encoding small globular secreted proteins, which appears to be a good chemosensory gene family candidate.


Assuntos
Proteínas de Artrópodes/genética , Evolução Molecular , Perfilação da Expressão Gênica , Aranhas/genética , Animais , Genoma , Família Multigênica , Filogenia , Análise de Sequência de DNA , Aranhas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...