Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611418

RESUMO

Coffee fruit cascara, which is the skin and pulp of the coffee cherry, has been authorized as a novel food for commercialization in the European Union. The present research assessed the feasibility of using spray drying to produce a soluble powder called instant cascara (IC), employing sun-dried ripe coffee cherry pulp as a raw material. Although there were no significant differences (p > 0.05) in the overall antioxidant capacity between the freeze-dried and spray-dried samples, after an in vitro simulation of the digestion process, the spray-dried sample was significantly (p < 0.05) more antioxidant. Both samples reduced physiological intracellular ROS and significantly decreased (p < 0.05) the secretion of the pro-inflammatory factor NO. Alkaloids and phenolic compounds were detected in intestinal digests. In conclusion, spray drying is a good technique for producing IC as its use does not affect its properties and causes less environmental impact than freeze drying, as calculated by life cycle assessment. Sensory analysis did not show significant differences between the commercial beverage and the IC beverage in the adult population. IC at 10 mg/mL was significantly less accepted in adolescents than the commercial beverage. Future work will include the reformulation of the IC beverage at 10 mg/mL, which has antioxidant and anti-inflammatory potential, to increase its hedonic acceptance in all consumer segments.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978864

RESUMO

Most effective anticancer drugs normally generate considerable cytotoxicity in normal cells; therefore, the preferential activation of apoptosis in cancer cells and the reduction of toxicity in normal cells is a great challenge in cancer research. Natural products with selective anticancer properties used as complementary medicine can help to achieve this goal. The aim of the present study was to analyze the effect of the addition of bee products [propolis (PR) or royal jelly (RJ) or propolis and royal jelly (PR+RJ), 2-10%] to thyme (TH) and chestnut honeys (CH) on the differential anticancer properties, mainly the cytotoxic and pro-apoptotic effects, in normal and cancer hepatic cells. The cytotoxic effects of samples were analyzed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (0-250 mg/mL) and the effects on apoptosis were analyzed using cell cycle analysis, TdT-dUTP terminal nick-end labeling (TUNEL) assay, DR5 (Death Receptor 5) and BAX (BCL-2-Associated X) activation, and caspases 8, 9, and 3 activities. Both honey samples alone and honey mixtures had no or very little apoptotic effect on normal cells. Antioxidant honey mixtures enhanced the apoptotic capacity of the corresponding honey alone via both extrinsic and intrinsic pathways. Of all the samples, chestnut honey enriched with 10% royal jelly and 10% propolis (sample 14, CH+10RJ+10PR) showed the highest apoptotic effect on tumor liver cells. The enrichment of monofloral honey with bee products could be used together with conventional anticancer treatments as a dietary supplement without side effects. On the other hand, it could be included in the diet as a natural sweetener with high added value.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36554850

RESUMO

The aim of the present study was to validate the cytotoxicity, genotoxicity, and preventive potential against benzo(a)pyrene (BaP)-induced DNA damage of nine samples of thyme and chestnut honeys enriched with bee products (royal jelly and propolis, 2-10%). Cell viability was determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (0-250 mg/mL) to select nontoxic concentrations, and DNA damage (0.1-10 µg/mL) was evaluated by the alkaline single-cell gel electrophoresis or comet assay. Treatment with honey samples or royal jelly and propolis did not affect the viability of HepG2 cells up to 100 and 50 mg/mL, respectively. Treatment with 100 µM BaP significantly increased (p ≤ 0.001) the levels of the DNA strand breaks. None of the tested concentrations (0.1-10 µg/mL) of the honey samples (thyme and chestnut), royal jelly, and propolis caused DNA damage per se. All tested samples at all the concentrations used decreased the genotoxic effect of BaP. In addition, all mixtures of thyme or chestnut honeys with royal jelly or propolis showed a greater protective effect against BaP than the samples alone, being the thyme and chestnut honey samples enriched with 10% royal jelly and 10% propolis the most effective (70.4% and 69.4%, respectively). The observed protective effect may be associated with the phenolic content and antioxidant capacity of the studied samples. In conclusion, the thyme and chestnut honey samples enriched with bee products present potential as natural chemoprotective agents against the chemical carcinogen BaP.


Assuntos
Mel , Própole , Thymus (Planta) , Mel/análise , Benzo(a)pireno/toxicidade , Própole/farmacologia , Dano ao DNA
4.
Foods ; 11(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230193

RESUMO

Honey consumption and imports have increased in recent years, and it is considered by consumers to be a healthy alternative to more commonly used sweeteners. Honey contains a mixture of polyphenols and antioxidant compounds, and the botanical origin and geographical area of collection play an important role on its chemical composition. The present study investigated the physicochemical properties, total phenolic content and antioxidant capacity of Spanish thyme honey and chestnut honey, and their mixtures with royal jelly (2% and 10%) and propolis (2% and 10%). The analysis of the physicochemical parameters of both honey samples showed values within the established limits. Propolis showed the highest value of total phenolic content (17.21-266.83 mg GAE/100 g) and antioxidant capacity (DPPH, ORAC and ABTS assays; 0.63-24.10 µg eq. Tx/g, 1.61-40.82 µg eq. Tx/g and 1.89-68.54 µg eq. Tx/g, respectively), and significantly reduced ROS production in human hepatoma cells. In addition, mixtures of honey with 10% of propolis improved the results obtained with natural honey, increasing the value of total phenolic content and antioxidant capacity. A significant positive correlation was observed between total phenolic compounds and antioxidant capacity. Therefore, the antioxidant capacity could be attributed to the phenolic compounds present in the samples, at least partially. In conclusion, our results indicated that thyme and chestnut honey supplemented with propolis can be an excellent natural source of antioxidants and could be incorporated as a potential food ingredient with biological properties of technological interest, added as a preservative. Moreover, these mixtures could be used as natural sweeteners enriched in antioxidants and other bioactive compounds.

5.
Front Pharmacol ; 10: 935, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551765

RESUMO

α-Hispanolol (α-H) is a labdane diterpenoid that has been shown to induce apoptosis in several human cancer cells. However, the effect of α-H in human glioblastoma cells has not been described. In the present work, we have investigated the effects of α-H on apoptosis, migration, and invasion of human glioblastoma cells with the aim of identifying the molecular targets underlying its mechanism of action. The results revealed that α-H showed significant cytotoxicity against human glioma cancer cell lines U87 and U373 in a concentration- and time-dependent manner. This effect was higher in U87 cells and linked to apoptosis, as revealed the increased percentage of sub-G1 population by cell cycle analysis and acquisition of typical features of apoptotic cell morphology. Apoptosis was also confirmed by significant presence of annexin V-positive cells and caspase activation. Pretreatment with caspase inhibitors diminishes the activities of caspase 8, 9, and 3 and maintains the percentage of viable glioblastoma cells, indicating that α-H induced cell apoptosis through both the extrinsic and the intrinsic pathways. Moreover, we also found that α-H downregulated the anti-apoptotic Bcl-2 and Bcl-xL proteins and activated the pro-apoptotic Bid and Bax proteins. On the other hand, α-H exhibited inhibitory effects on the migration and invasion of U87 cells in a concentration-dependent manner. Furthermore, additional experiments showed that α-H treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase MMP-2 and MMP-9 and increased the expression of TIMP-1 inhibitor, probably via p38MAPK regulation. Finally, xenograft assays confirmed the anti-glioma efficacy of α-H. Taken together, these findings suggest that α-H may exert anti-tumoral effects in vitro and in vivo through the inhibition of cell proliferation and invasion as well as by the induction of apoptosis in human glioblastoma cells. This research describes α-H as a new drug that may improve the therapeutic efficacy against glioblastoma tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...