Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(2): 803-819, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629716

RESUMO

Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias , Humanos , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapia , Mutação , Animais , Medicina de Precisão , Genoma Humano
2.
Nat Biotechnol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472508

RESUMO

Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.

3.
Nat Cancer ; 5(2): 315-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177458

RESUMO

Metastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium. Genotypic configurations observed in patients produced metastatic gastric cancers that recapitulated the histological, molecular and clinical features of all nonviral molecular subtypes of the human disease. Applying this platform to both wild-type and immunodeficient mice revealed previously unappreciated links between the genotype, organotropism and immune surveillance of metastatic cells, which produced distinct patterns of metastasis that were mirrored in patients. Our results establish a highly portable platform for generating autochthonous cancer models with flexible genotypes and host backgrounds, which can unravel mechanisms of gastric tumorigenesis or test new therapeutic concepts.


Assuntos
Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Modelos Animais de Doenças , Mucosa Gástrica/patologia , Genótipo
4.
Cell Rep ; 43(1): 113629, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165806

RESUMO

The interplay between metabolism and chromatin signaling is implicated in cancer progression. However, whether and how metabolic reprogramming in tumors generates chromatin vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor aberrant activation of the NRF2 antioxidant pathway, which drives aggressive and chemo-resistant disease. Using a chromatin-focused CRISPR screen, we report that NRF2 activation sensitizes LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDACs). This association is observed across cultured cells, mouse models, and patient-derived xenografts. Integrative epigenomic, transcriptomic, and metabolomic analysis demonstrates that HDAC inhibition causes widespread redistribution of H4ac and its reader protein, which transcriptionally downregulates metabolic enzymes. This results in reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest NRF2 activation as a potential biomarker for effective repurposing of HDAC inhibitors to treat solid tumors.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Animais , Humanos , Camundongos , Cromatina , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Reprogramação Metabólica , Fator 2 Relacionado a NF-E2/metabolismo
5.
Nat Biotechnol ; 42(3): 424-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169967

RESUMO

Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.


Assuntos
Neoplasias Pancreáticas , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Humanos , Animais , Camundongos Transgênicos , Mutação/genética , Neoplasias Pancreáticas/genética , Linhagem Celular , Edição de Genes , Sistemas CRISPR-Cas/genética
6.
Nat Biotechnol ; 42(3): 437-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37563300

RESUMO

Although single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo. Combined with plasmid-based or synthetic guide RNAs, iBE drives efficient engineering of individual or multiple SNVs in intestinal, lung and pancreatic organoids. Temporal regulation of base editor activity allows controlled sequential genome editing ex vivo and in vivo, and delivery of sgRNAs directly to target tissues facilitates generation of in situ preclinical cancer models.


Assuntos
Edição de Genes , Neoplasias , Camundongos , Animais , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Neoplasias/genética , Neoplasias/terapia , Pulmão
7.
Nat Struct Mol Biol ; 30(11): 1640-1652, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735617

RESUMO

The SS18-SSX fusion drives oncogenic transformation in synovial sarcoma by bridging SS18, a member of the mSWI/SNF (BAF) complex, to Polycomb repressive complex 1 (PRC1) target genes. Here we show that the ability of SS18-SSX to occupy H2AK119ub1-rich regions is an intrinsic property of its SSX C terminus, which can be exploited by fusion to transcriptional regulators beyond SS18. Accordingly, SS18-SSX recruitment occurs in a manner that is independent of the core components and catalytic activity of BAF. Alternative SSX fusions are also recruited to H2AK119ub1-rich chromatin and reproduce the expression signatures of SS18-SSX by engaging with transcriptional activators. Variant Polycomb repressive complex 1.1 (PRC1.1) acts as the main depositor of H2AK119ub1 and is therefore required for SS18-SSX occupancy. Importantly, the SSX C terminus not only depends on H2AK119ub1 for localization, but also further increases it by promoting PRC1.1 complex stability. Consequently, high H2AK119ub1 levels are a feature of murine and human synovial sarcomas. These results uncover a critical role for SSX-C in mediating gene deregulation in synovial sarcoma by providing specificity to chromatin and further enabling oncofusion binding by enhancing PRC1.1 stability and H2AK119ub1 deposition.


Assuntos
Sarcoma Sinovial , Humanos , Animais , Camundongos , Sarcoma Sinovial/genética , Sarcoma Sinovial/metabolismo , Complexo Repressor Polycomb 1/genética , Ativação Transcricional , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37487630

RESUMO

Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.

9.
Nat Commun ; 14(1): 4259, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460547

RESUMO

Interplay between chromatin-associated complexes and modifications critically contribute to the partitioning of epigenome into stable and functionally distinct domains. Yet there is a lack of systematic identification of chromatin crosstalk mechanisms, limiting our understanding of the dynamic transition between chromatin states during development and disease. Here we perform co-dependency mapping of genes using CRISPR-Cas9-mediated fitness screens in pan-cancer cell lines to quantify gene-gene functional relationships. We identify 145 co-dependency modules and further define the molecular context underlying the essentiality of these modules by incorporating mutational, epigenome, gene expression and drug sensitivity profiles of cell lines. These analyses assign new protein complex composition and function, and predict new functional interactions, including an unexpected co-dependency between two transcriptionally counteracting chromatin complexes - polycomb repressive complex 2 (PRC2) and MLL-MEN1 complex. We show that PRC2-mediated H3K27 tri-methylation regulates the genome-wide distribution of MLL1 and MEN1. In lymphoma cells with EZH2 gain-of-function mutations, the re-localization of MLL-MEN1 complex drives oncogenic gene expression and results in a hypersensitivity to pharmacologic inhibition of MEN1. Together, our findings provide a resource for discovery of trans-regulatory interactions as mechanisms of chromatin regulation and potential targets of synthetic lethality.


Assuntos
Linfoma , Neoplasias , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina
10.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162970

RESUMO

Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.

11.
Nature ; 616(7958): 806-813, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991128

RESUMO

Metastasis frequently develops from disseminated cancer cells that remain dormant after the apparently successful treatment of a primary tumour. These cells fluctuate between an immune-evasive quiescent state and a proliferative state liable to immune-mediated elimination1-6. Little is known about the clearing of reawakened metastatic cells and how this process could be therapeutically activated to eliminate residual disease in patients. Here we use models of indolent lung adenocarcinoma metastasis to identify cancer cell-intrinsic determinants of immune reactivity during exit from dormancy. Genetic screens of tumour-intrinsic immune regulators identified the stimulator of interferon genes (STING) pathway as a suppressor of metastatic outbreak. STING activity increases in metastatic progenitors that re-enter the cell cycle and is dampened by hypermethylation of the STING promoter and enhancer in breakthrough metastases or by chromatin repression in cells re-entering dormancy in response to TGFß. STING expression in cancer cells derived from spontaneous metastases suppresses their outgrowth. Systemic treatment of mice with STING agonists eliminates dormant metastasis and prevents spontaneous outbreaks in a T cell- and natural killer cell-dependent manner-these effects require cancer cell STING function. Thus, STING provides a checkpoint against the progression of dormant metastasis and a therapeutically actionable strategy for the prevention of disease relapse.


Assuntos
Neoplasias Pulmonares , Metástase Neoplásica , Animais , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Ciclo Celular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T/imunologia , Fator de Crescimento Transformador beta , Células Matadoras Naturais/imunologia
12.
Cancer Discov ; 13(1): 146-169, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36264143

RESUMO

Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE: Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Camundongos , Animais , Proteína de Leucina Linfoide-Mieloide/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Leucemia/tratamento farmacológico , Cromatina , Mamíferos/genética , Mamíferos/metabolismo
13.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234855

RESUMO

Control of cell identity and number is central to tissue function, yet principles governing organization of malignant cells in tumor tissues remain poorly understood. Using mathematical modeling and candidate-based analysis, we discover primary and metastatic pancreatic ductal adenocarcinoma (PDAC) organize in a stereotypic pattern whereby PDAC cells responding to WNT signals (WNT-R) neighbor WNT-secreting cancer cells (WNT-S). Leveraging lineage-tracing, we reveal the WNT-R state is transient and gives rise to the WNT-S state that is highly stable and committed to organizing malignant tissue. We further show that a subset of WNT-S cells expressing the Notch ligand DLL1 form a functional niche for WNT-R cells. Genetic inactivation of WNT secretion or Notch pathway components, or cytoablation of the WNT-S state disrupts PDAC tissue organization, suppressing tumor growth and metastasis. This work indicates PDAC growth depends on an intricately controlled equilibrium of functionally distinct cancer cell states, uncovering a fundamental principle governing solid tumor growth and revealing new opportunities for therapeutic intervention.

14.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35442775

RESUMO

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Interferência de RNA
15.
Nat Biotechnol ; 40(6): 862-873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165384

RESUMO

Base editing can be applied to characterize single nucleotide variants of unknown function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors remains challenging. Here, we describe modular base-editing-activity 'sensors' that link sgRNAs and cognate target sites in cis and use them to systematically measure the editing efficiency and precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying sensor editing across >200,000 editor-sgRNA combinations, we provide a comprehensive resource of sgRNAs for introducing and interrogating cancer-associated single nucleotide variants in multiple model systems. We demonstrate that sensor-validated tools streamline production of in vivo cancer models and that integrating sensor modules in pooled sgRNA libraries can aid interpretation of high-throughput base editing screens. Using this approach, we identify several previously uncharacterized mutant TP53 alleles as drivers of cancer cell proliferation and in vivo tumor development. We anticipate that the framework described here will facilitate the functional interrogation of cancer variants in cell and animal models.


Assuntos
Edição de Genes , Neoplasias , Animais , Sistemas CRISPR-Cas/genética , Neoplasias/genética , Nucleotídeos , RNA Guia de Cinetoplastídeos/genética
16.
Cancer Discov ; 12(2): 562-585, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34561242

RESUMO

SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes club cell secretory protein-positive cells within the lung in a cell type-dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex via Smarca4 acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution. SIGNIFICANCE: We demonstrate cell-type specificity in the tumor-suppressive functions of SMARCA4 in the lung, pointing toward a critical role of the cell-of-origin in driving SWI/SNF-mutant lung adenocarcinoma. We further show the direct effects of SMARCA4 loss on SWI/SNF function and chromatin regulation that cause aggressive malignancy during lung cancer evolution.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Adenocarcinoma de Pulmão/genética , Transformação Celular Neoplásica , DNA Helicases/genética , Neoplasias Pulmonares/genética , Metástase Neoplásica , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão/secundário , Animais , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos
17.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935874

RESUMO

T cell receptor (TCR) signal strength is a key determinant of T cell responses. We developed a cancer mouse model in which tumor-specific CD8 T cells (TST cells) encounter tumor antigens with varying TCR signal strength. High-signal-strength interactions caused TST cells to up-regulate inhibitory receptors (IRs), lose effector function, and establish a dysfunction-associated molecular program. TST cells undergoing low-signal-strength interactions also up-regulated IRs, including PD1, but retained a cell-intrinsic functional state. Surprisingly, neither high- nor low-signal-strength interactions led to tumor control in vivo, revealing two distinct mechanisms by which PD1hi TST cells permit tumor escape; high signal strength drives dysfunction, while low signal strength results in functional inertness, where the signal strength is too low to mediate effective cancer cell killing by functional TST cells. CRISPR-Cas9-mediated fine-tuning of signal strength to an intermediate range improved anti-tumor activity in vivo. Our study defines the role of TCR signal strength in TST cell function, with important implications for T cell-based cancer immunotherapies.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Especificidade do Receptor de Antígeno de Linfócitos T
18.
Nature ; 602(7895): 156-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847567

RESUMO

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/imunologia , Células-Tronco/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Autorrenovação Celular , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Feminino , Glucose-6-Fosfatase/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/patologia , Linfonodos/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Transplante de Células-Tronco , Células-Tronco/imunologia , Células-Tronco/metabolismo , Transcriptoma
19.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648371

RESUMO

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Assuntos
RNA Viral/genética , Replicon/fisiologia , SARS-CoV-2/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Interferons/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Plasmídeos , RNA Viral/metabolismo , Replicon/genética , Genética Reversa , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Saccharomyces cerevisiae/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Pseudotipagem Viral , Vírion/genética , Vírion/fisiologia , Replicação Viral
20.
Cancer Discov ; 11(12): 3214-3229, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34344693

RESUMO

Small cell lung cancer (SCLC) has limited therapeutic options and an exceptionally poor prognosis. Understanding the oncogenic drivers of SCLC may help define novel therapeutic targets. Recurrent genomic rearrangements have been identified in SCLC, most notably an in-frame gene fusion between RLF and MYCL found in up to 7% of the predominant ASCL1-expressing subtype. To explore the role of this fusion in oncogenesis and tumor progression, we used CRISPR/Cas9 somatic editing to generate a Rlf-Mycl-driven mouse model of SCLC. RLF-MYCL fusion accelerated transformation and proliferation of murine SCLC and increased metastatic dissemination and the diversity of metastatic sites. Tumors from the RLF-MYCL genetically engineered mouse model displayed gene expression similarities with human RLF-MYCL SCLC. Together, our studies support RLF-MYCL as the first demonstrated fusion oncogenic driver in SCLC and provide a new preclinical mouse model for the study of this subtype of SCLC. SIGNIFICANCE: The biological and therapeutic implications of gene fusions in SCLC, an aggressive metastatic lung cancer, are unknown. Our study investigates the functional significance of the in-frame RLF-MYCL gene fusion by developing a Rlf-Mycl-driven genetically engineered mouse model and defining the impact on tumor growth and metastasis. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Fusão Gênica , Genes myc , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Proteínas de Ligação a Telômeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...