Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6548, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848415

RESUMO

Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.


Assuntos
Quinases da Família src , Fosforilação , Proteína Tirosina Quinase CSK/metabolismo , Domínio Catalítico , Quinases da Família src/metabolismo
2.
Nat Commun ; 14(1): 3016, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230995

RESUMO

Protein methylation is an important modification beyond epigenetics. However, systems analyses of protein methylation lag behind compared to other modifications. Recently, thermal stability analyses have been developed which provide a proxy of a protein functional status. Here, we show that molecular and functional events closely linked to protein methylation can be revealed by the analysis of thermal stability. Using mouse embryonic stem cells as a model, we show that Prmt5 regulates mRNA binding proteins that are enriched in intrinsically disordered regions and involved in liquid-liquid phase separation mechanisms, including the formation of stress granules. Moreover, we reveal a non-canonical function of Ezh2 in mitotic chromosomes and the perichromosomal layer, and identify Mki67 as a putative Ezh2 substrate. Our approach provides an opportunity to systematically explore protein methylation function and represents a rich resource for understanding its role in pluripotency.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Metilação , Histonas/metabolismo , Epigênese Genética , Células-Tronco Embrionárias Murinas/metabolismo
3.
Nat Commun ; 8(1): 295, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821724

RESUMO

The biogenesis of autophagosomes depends on the conjugation of Atg8-like proteins with phosphatidylethanolamine. Atg8 processing by the cysteine protease Atg4 is required for its covalent linkage to phosphatidylethanolamine, but it is also necessary for Atg8 deconjugation from this lipid to release it from membranes. How these two cleavage steps are coordinated is unknown. Here we show that phosphorylation by Atg1 inhibits Atg4 function, an event that appears to exclusively occur at the site of autophagosome biogenesis. These results are consistent with a model where the Atg8-phosphatidylethanolamine pool essential for autophagosome formation is protected at least in part by Atg4 phosphorylation by Atg1 while newly synthesized cytoplasmic Atg8 remains susceptible to constitutive Atg4 processing.The protease Atg4 mediates Atg8 lipidation, required for autophagosome biogenesis, but also triggers Atg8 release from the membranes, however is unclear how these steps are coordinated. Here the authors show that phosphorylation by Atg1 inhibits Atg4 at autophagosome formation sites.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Western Blotting , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Fosfatidiletanolaminas/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
EMBO Rep ; 18(5): 765-780, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28330855

RESUMO

Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3-interacting region (LIR) at the C-terminus of the protein and a novel motif at the N-terminus. Although both sites are important for Atg4-Atg8 interaction in vivo, only the new N-terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE-bound Atg8.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Membranas/química , Membranas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Oncotarget ; 8(65): 108290-108291, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312531
6.
J Cell Sci ; 128(2): 185-92, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25568152

RESUMO

Autophagosomes are the hallmark of autophagy, but despite their central role in this degradative pathway that involves vesicle transport to lysosomes or vacuoles, the mechanism underlying their biogenesis still remains largely unknown. Our current concepts about autophagosome biogenesis are based on models suggesting that a small autonomous cisterna grows into an autophagosome through expansion at its extremities. Recent findings have revealed that endoplasmic reticulum (ER) exit sites (ERES), specialized ER regions where proteins are sorted into the secretory system, are key players in the formation of autophagosomes. Owing to the morphological connection of nascent autophagosomes with the ER, this has raised several questions that challenge our current perception of autophagosome biogenesis, such as are ERES the compartments where autophagosome formation takes place? What is the functional relevance of this connection? Are these compartments providing essential molecules for the generation of autophagosomes and/or are they structural platforms where these vesicles emerge? In this Hypothesis, we discuss recent data that have implicated the ERES in autophagosome biogenesis and we propose two models to describe the possible role of this compartment at different steps in the process of autophagosome biogenesis. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205) and 'WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome' by Tassula Proikas-Cezanne et al. (J. Cell Sci. 128, 207-217).


Assuntos
Autofagia/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia , Comunicação Celular/genética , Retículo Endoplasmático/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Fagossomos/genética , Fosfatos de Fosfatidilinositol/genética , Transporte Proteico/genética , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular/metabolismo
7.
EMBO J ; 32(24): 3116-8, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24219988

RESUMO

Amphisomes are intermediate organelles, formed during autophagy through the fusion between autophagosomes and endosomes. Complex multivesicular vacuoles that resemble amphisomes have been observed in various cell types, but whether they have cellular roles other than being a precursor structure is still enigmatic. While autophagy-related (ATG) proteins interact with the endocytic pathways in other processes different from autophagy, Patel and colleagues now report that these factors come together to generate amphisome-like compartments that regulate mucin secretion in goblet cells.


Assuntos
Autofagia , Células Caliciformes/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteína 5 Relacionada à Autofagia
8.
EMBO J ; 32(17): 2348-61, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23921556

RESUMO

Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , GTP Fosfo-Hidrolases/genética , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/genética
9.
J Lipid Res ; 54(2): 310-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175778

RESUMO

Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ(7)-reductase, Δ(8,7)-isomerase, and Δ(14)-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ(24)-reductase and Δ(8,7)-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.


Assuntos
Antipsicóticos/farmacologia , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Acetatos/metabolismo , Apolipoproteína B-100/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol/biossíntese , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo
10.
Biochim Biophys Acta ; 1788(9): 1731-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19433058

RESUMO

Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3beta-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.


Assuntos
Cavéolas/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/biossíntese , Microdomínios da Membrana/efeitos dos fármacos , Células 3T3-L1 , Animais , Cavéolas/metabolismo , Caveolina 1/metabolismo , Desidrocolesteróis/farmacologia , Inibidores Enzimáticos/farmacologia , Gangliosídeo G(M1)/metabolismo , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Camundongos , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo , Triparanol/farmacologia , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
11.
J Neurochem ; 110(2): 631-40, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457089

RESUMO

Antipsychotics are established drugs in schizophrenia treatment which, however, are not free of side effects. Lipid rafts are critical for normal brain function. Several G protein-coupled receptors, such as somatostatin (SRIF) receptors, have been shown to localize to lipid rafts. The aim of this study was to investigate whether haloperidol treatment affects the composition and functionality of lipid rafts in SH-SY5Y neuroblastoma cells. Haloperidol inhibited cholesterol biosynthesis, leading to a marked reduction in cell cholesterol content and to an accumulation of sterol intermediates, particularly cholesta-8,14-dien-3beta-ol. These changes were accompanied by a loss of flotillin-1 and Fyn from the lipid rafts. We next studied the functionality of the SRIF receptor. Treatment with haloperidol reduced the inhibitory effect of SRIF on adenylyl cyclase (AC) activity. On the other side, haloperidol decreased basal AC activity but increased forskolin-stimulated AC activity. Addition of free cholesterol to the culture medium abrogated the effects of haloperidol on lipid raft composition and SRIF signaling whereas the AC response to forskolin remained elevated. The results show that haloperidol, by affecting cholesterol homeostasis, ultimately alters SRIF signaling and AC activity, which might have physiological consequences.


Assuntos
Antipsicóticos/farmacologia , Haloperidol/farmacologia , Neuroblastoma/metabolismo , Somatostatina/metabolismo , Antipsicóticos/química , Linhagem Celular Tumoral , Haloperidol/química , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neuroblastoma/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Somatostatina/química , Somatostatina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...