Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(2): 179-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989901

RESUMO

Chronic kidney disease (CKD) is associated with anxiety; however, its exact mechanism is not well understood. Therefore, the aim of the present study was to assess the effect of moderate CKD on anxiety in rats. 5/6 nephrectomy was performed in male Wistar rats. 7 weeks after, anxiety-like behavior was assessed by elevated plus maze (EPM), open field (OF), and marble burying (MB) tests. At weeks 8 and 9, urinalysis was performed, and blood and amygdala samples were collected, respectively. In the amygdala, the gene expression of Avp and the gene and protein expression of Crh, Crhr1, and Crhr2 were analyzed. Furthermore, the plasma concentration of corticosterone, uremic toxins, and tryptophan metabolites was measured by UHPLC-MS/MS. Laboratory tests confirmed the development of CKD. In the CKD group, the closed arm time increased; the central time and the total number of entries decreased in the EPM. There was a reduction in rearing, central distance and time in the OF, and fewer interactions with marbles were detected during MB. CKD evoked an upregulation of gene expression of Crh, Crhr1, and Crhr2, but not Avp, in the amygdala. However, there was no alteration in protein expression. In the CKD group, plasma concentrations of p-cresyl-sulfate, indoxyl-sulfate, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, xanthurenic acid, 5-hydroxyindoleacetic acid, picolinic acid, and quinolinic acid increased. However, the levels of tryptophan, tryptamine, 5-hydroxytryptophan, serotonin, and tyrosine decreased. In conclusion, moderate CKD evoked anxiety-like behavior that might be mediated by the accumulation of uremic toxins and metabolites of the kynurenine pathway, but the contribution of the amygdalar CRH system to the development of anxiety seems to be negligible at this stage.


Assuntos
Insuficiência Renal Crônica , Triptofano , Ratos , Masculino , Animais , Triptofano/metabolismo , Cinurenina/metabolismo , Ratos Wistar , Toxinas Urêmicas , Espectrometria de Massas em Tandem , Tonsila do Cerebelo/metabolismo , Insuficiência Renal Crônica/metabolismo , Ansiedade
2.
Geroscience ; 46(2): 2463-2488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987885

RESUMO

The prevalence of chronic kidney disease (CKD) is increasing globally, especially in elderly patients. Uremic cardiomyopathy is a common cardiovascular complication of CKD, characterized by left ventricular hypertrophy (LVH), diastolic dysfunction, and fibrosis. Kisspeptins and their receptor, KISS1R, exert a pivotal influence on kidney pathophysiology and modulate age-related pathologies across various organ systems. KISS1R agonists, including kisspeptin-13 (KP-13), hold promise as novel therapeutic agents within age-related biological processes and kidney-related disorders. Our investigation aimed to elucidate the impact of KP-13 on the trajectory of CKD and uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (I) sham-operated, (II) 5/6 nephrectomy-induced CKD, (III) CKD subjected to a low dose of KP-13 (intraperitoneal 13 µg/day), and (IV) CKD treated with a higher KP-13 dose (intraperitoneal 26 µg/day). Treatments were administered daily from week 3 for 10 days. After 13 weeks, KP-13 increased systemic blood pressure, accentuating diastolic dysfunction's echocardiographic indicators and intensifying CKD-associated markers such as serum urea levels, glomerular hypertrophy, and tubular dilation. Notably, KP-13 did not exacerbate circulatory uremic toxin levels, renal inflammation, or fibrosis markers. In contrast, the higher KP-13 dose correlated with reduced posterior and anterior wall thickness, coupled with diminished cardiomyocyte cross-sectional areas and concurrent elevation of inflammatory (Il6, Tnf), fibrosis (Col1), and apoptosis markers (Bax/Bcl2) relative to the CKD group. In summary, KP-13's influence on CKD and uremic cardiomyopathy encompassed heightened blood pressure and potentially activated inflammatory and apoptotic pathways in the left ventricle.


Assuntos
Cardiomiopatias , Hipertensão , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Masculino , Idoso , Kisspeptinas , Receptores de Kisspeptina-1 , Ratos Wistar , Insuficiência Renal Crônica/complicações , Cardiomiopatias/complicações , Hipertensão/complicações , Fibrose
3.
JACC Basic Transl Sci ; 8(9): 1160-1176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37791301

RESUMO

Chronic kidney disease is a global health problem affecting 10% to 12% of the population. Uremic cardiomyopathy is often characterized by left ventricular hypertrophy, fibrosis, and diastolic dysfunction. Dysregulation of neuregulin-1ß signaling in the heart is a known contributor to heart failure. The systemically administered recombinant human neuregulin-1ß for 10 days in our 5/6 nephrectomy-induced model of chronic kidney disease alleviated the progression of uremic cardiomyopathy and kidney dysfunction in type 4 cardiorenal syndrome. The currently presented positive preclinical data warrant clinical studies to confirm the beneficial effects of recombinant human neuregulin-1ß in patients with chronic kidney disease.

4.
Sci Rep ; 13(1): 14046, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640761

RESUMO

Uremic cardiomyopathy is characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis. Dysregulation of the kisspeptin receptor (KISS1R)-mediated pathways are associated with the development of fibrosis in cancerous diseases. Here, we investigated the effects of the KISS1R antagonist peptide-234 (P234) on the development of uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (i) Sham, (ii) chronic kidney disease (CKD) induced by 5/6 nephrectomy, (iii) CKD treated with a lower dose of P234 (ip. 13 µg/day), (iv) CKD treated with a higher dose of P234 (ip. 26 µg/day). Treatments were administered daily from week 3 for 10 days. At week 13, the P234 administration did not influence the creatinine clearance and urinary protein excretion. However, the higher dose of P234 led to reduced anterior and posterior wall thicknesses, more severe interstitial fibrosis, and overexpression of genes associated with left ventricular remodeling (Ctgf, Tgfb, Col3a1, Mmp9), stretch (Nppa), and apoptosis (Bax, Bcl2, Casp7) compared to the CKD group. In contrast, no significant differences were found in the expressions of apoptosis-associated proteins between the groups. Our results suggest that the higher dose of P234 hastens the development and pathophysiology of uremic cardiomyopathy by activating the fibrotic TGF-ß-mediated pathways.


Assuntos
Cardiomiopatias , Peptídeos , Masculino , Ratos , Animais , Receptores de Kisspeptina-1 , Ratos Wistar , Apoptose , Cardiomiopatias/etiologia
5.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806390

RESUMO

Elevated blood cholesterol is a major risk factor for coronary heart disease. Moreover, direct effects on the myocardium also contribute to the adverse effects of hypercholesterolemia. Here, we investigated the effect of hypercholesterolemia on the cardiac proteome. Male Wistar rats were fed with a laboratory rodent chow supplemented with 2% cholesterol for 8 weeks to induce hypercholesterolemia. The protein expression data obtained from the proteomic characterization of left ventricular samples from normo- and hypercholesterolemic animals were subjected to gene ontology (GO) and protein interaction analyses. Elevated circulating cholesterol levels were accompanied by diastolic dysfunction in cholesterol-fed rats. The proteomic characterization of left ventricular samples revealed altered expression of 45 proteins due to hypercholesterolemia. Based on the Gene Ontology analysis, hypercholesterolemia was associated with disturbed expression of cytoskeletal and contractile proteins. Beta-actin was downregulated in the hypercholesterolemic myocardium, and established a prominent hub of the protein interaction network. Analysis of the unfiltered dataset revealed concordant downregulated expression patterns in proteins associated with the arrangement of the contractile system (e.g., cardiac-specific troponins and myosin complex), and in subunits of the mitochondrial respiratory chain. We conclude that the observed changes in the cardiac proteome may contribute to the development of diastolic dysfunction in hypercholesterolemia.


Assuntos
Cardiopatias , Hipercolesterolemia , Animais , Colesterol/metabolismo , Dieta , Cardiopatias/metabolismo , Hipercolesterolemia/metabolismo , Masculino , Miocárdio/metabolismo , Proteoma/metabolismo , Proteômica , Ratos , Ratos Wistar
6.
Biol Sex Differ ; 13(1): 5, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101146

RESUMO

BACKGROUND: Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). METHODS: High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. RESULTS: Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. CONCLUSIONS: HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.


Assuntos
Insuficiência Cardíaca , Resistência à Insulina , Síndrome Metabólica , Animais , Apolipoproteína B-100 , Modelos Animais de Doenças , Feminino , Hipertrofia Ventricular Esquerda , Masculino , Síndrome Metabólica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Receptores para Leptina , Volume Sistólico
7.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216317

RESUMO

Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced cardiotoxicity model. The DOXO-induced overexpression of Il1 and Il6 was markedly decreased by losartan and mirabegron. Mirabegron and the combination treatment improved systolic and diastolic dysfunction and significantly decreased overexpression of Smad2 and Smad3 in our DOXO-induced cardiotoxicity model. Only mirabegron reduced DOXO-induced cardiac fibrosis significantly. Mirabegron and its combination with losartan seem to be promising therapeutic tools against DOXO-induced chronic cardiotoxicity.


Assuntos
Cardiomiopatias , Cardiotoxicidade , Acetanilidas , Animais , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Losartan/efeitos adversos , Masculino , Ratos , Ratos Wistar , Tiazóis
8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884782

RESUMO

Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-ß/SMAD signaling pathway in our RIHD model.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Losartan/uso terapêutico , Síndrome da Fibrose por Radiação/tratamento farmacológico , Animais , Quimases/metabolismo , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome da Fibrose por Radiação/patologia , Síndrome da Fibrose por Radiação/prevenção & controle , Ratos , Ratos Sprague-Dawley , Proteína Smad2/análise , Proteína Smad3/análise , Fator de Crescimento Transformador beta1/análise
9.
Biol Sex Differ ; 12(1): 49, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488888

RESUMO

BACKGROUND: Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS: CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS: The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION: The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.


Assuntos
Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , Insuficiência Renal Crônica , Animais , Feminino , Coração , Humanos , Masculino , Ratos , Ratos Wistar
10.
Sci Rep ; 11(1): 17495, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471171

RESUMO

Uremic cardiomyopathy is characterized by diastolic dysfunction (DD), left ventricular hypertrophy (LVH), and fibrosis. Angiotensin-II plays a major role in the development of uremic cardiomyopathy via nitro-oxidative and inflammatory mechanisms. In heart failure, the beta-3 adrenergic receptor (ß3-AR) is up-regulated and coupled to endothelial nitric oxide synthase (eNOS)-mediated pathways, exerting antiremodeling effects. We aimed to compare the antiremodeling effects of the angiotensin-II receptor blocker losartan and the ß3-AR agonist mirabegron in uremic cardiomyopathy. Chronic kidney disease (CKD) was induced by 5/6th nephrectomy in male Wistar rats. Five weeks later, rats were randomized into four groups: (1) sham-operated, (2) CKD, (3) losartan-treated (10 mg/kg/day) CKD, and (4) mirabegron-treated (10 mg/kg/day) CKD groups. At week 13, echocardiographic, histologic, laboratory, qRT-PCR, and Western blot measurements proved the development of uremic cardiomyopathy with DD, LVH, fibrosis, inflammation, and reduced eNOS levels, which were significantly ameliorated by losartan. However, mirabegron showed a tendency to decrease DD and fibrosis; but eNOS expression remained reduced. In uremic cardiomyopathy, ß3-AR, sarcoplasmic reticulum ATPase (SERCA), and phospholamban levels did not change irrespective of treatments. Mirabegron reduced the angiotensin-II receptor 1 expression in uremic cardiomyopathy that might explain its mild antiremodeling effects despite the unchanged expression of the ß3-AR.


Assuntos
Acetanilidas/farmacologia , Cardiomiopatias/tratamento farmacológico , Losartan/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Insuficiência Renal Crônica/complicações , Tiazóis/farmacologia , Uremia/tratamento farmacológico , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Masculino , Nefrectomia/efeitos adversos , Óxido Nítrico Sintase Tipo III/genética , Ratos , Ratos Wistar , Uremia/etiologia , Uremia/metabolismo , Uremia/patologia
11.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919597

RESUMO

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
12.
Clin Res Cardiol ; 110(4): 507-531, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33591377

RESUMO

Cancer management has undergone significant improvements, which led to increased long-term survival rates among cancer patients. Radiotherapy (RT) has an important role in the treatment of thoracic tumors, including breast, lung, and esophageal cancer, or Hodgkin's lymphoma. RT aims to kill tumor cells; however, it may have deleterious side effects on the surrounding normal tissues. The syndrome of unwanted cardiovascular adverse effects of thoracic RT is termed radiation-induced heart disease (RIHD), and the risk of developing RIHD is a critical concern in current oncology practice. Premature ischemic heart disease, cardiomyopathy, heart failure, valve abnormalities, and electrical conduct defects are common forms of RIHD. The underlying mechanisms of RIHD are still not entirely clear, and specific therapeutic interventions are missing. In this review, we focus on the molecular pathomechanisms of acute and chronic RIHD and propose preventive measures and possible pharmacological strategies to minimize the burden of RIHD.


Assuntos
Benchmarking/métodos , Gerenciamento Clínico , Cardiopatias/diagnóstico , Coração/efeitos da radiação , Oncologia , Sistemas Automatizados de Assistência Junto ao Leito/organização & administração , Lesões por Radiação/diagnóstico , Cardiopatias/terapia , Humanos , Lesões por Radiação/terapia
13.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466450

RESUMO

Ischemic preconditioning (IPre) reduces ischemia/reperfusion (I/R) injury in the heart. The non-coding microRNA miR-125b-1-3p has been demonstrated to play a role in the mechanism of IPre. Hypercholesterolemia is known to attenuate the cardioprotective effect of preconditioning; nevertheless, the exact underlying mechanisms are not clear. Here we investigated, whether hypercholesterolemia influences the induction of miR-125b-1-3p by IPre. Male Wistar rats were fed with a rodent chow supplemented with 2% cholesterol and 0.25% sodium-cholate hydrate for 8 weeks to induce high blood cholesterol levels. The hearts of normo- and hypercholesterolemic animals were then isolated and perfused according to Langendorff, and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPre (3 × 5 min I/R cycles applied before index ischemia). IPre significantly reduced infarct size in the hearts of normocholesterolemic rats; however, IPre was ineffective in the hearts of hypercholesterolemic animals. Similarly, miR-125b-1-3p was upregulated by IPre in hearts of normocholesterolemic rats, while in the hearts of hypercholesterolemic animals IPre failed to increase miR-125b-1-3p significantly. Phosphorylation of cardiac Akt, ERK, and STAT3 was not significantly different in any of the groups at the end of reperfusion. Based on these results we propose here that hypercholesterolemia attenuates the upregulation of miR-125b-1-3p by IPre, which seems to be associated with the loss of cardioprotection.


Assuntos
Colesterol/sangue , Hipercolesterolemia/metabolismo , Precondicionamento Isquêmico Miocárdico , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Hipercolesterolemia/complicações , Masculino , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
14.
Artigo em Inglês | MEDLINE | ID: mdl-32047525

RESUMO

BACKGROUND: In folk medicine, common chickweed (Stellaria media) has traditionally been applied for the treatment of hypercholesterolemia; however, there is no firm experimental proof to support the rationale of this practice. Therefore, we aimed to assess the efficacy and safety of Stellaria media) has traditionally been applied for the treatment of hypercholesterolemia; however, there is no firm experimental proof to support the rationale of this practice. Therefore, we aimed to assess the efficacy and safety of Materials and Methods. Adult male Wistar rats were divided into 3 groups. The (i) control group received standard laboratory chow, the (ii) hypercholesterolemic group received cholesterol-enriched diet, and the (iii) chickweed-treated hypercholesterolemic group received cholesterol-enriched diet and 100 mg/kg body weight Stellaria media) has traditionally been applied for the treatment of hypercholesterolemia; however, there is no firm experimental proof to support the rationale of this practice. Therefore, we aimed to assess the efficacy and safety of. RESULTS: Cholesterol-enriched diet significantly increased serum total cholesterol, LDL- and HDL-cholesterol levels, but did not affect triacylglycerol concentrations. The addition of chickweed to the diet did not cause any significant change in serum lipid profile or body weight increase. Liver and kidney functions were unaltered and cardiac morphology and function were not changed due to Stellaria media) has traditionally been applied for the treatment of hypercholesterolemia; however, there is no firm experimental proof to support the rationale of this practice. Therefore, we aimed to assess the efficacy and safety of. CONCLUSION: Although chickweed does not seem to be toxic, our results do not support the rationale of its use in the treatment of hypercholesterolemia.

15.
Oxid Med Cell Longev ; 2019: 3218275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885782

RESUMO

Prediabetes is a condition affecting more than 35% of the population. In some forms, excessive carbohydrate intake (primarily refined sugar) plays a prominent role. Prediabetes is a symptomless, mostly unrecognized disease which increases cardiovascular risk. In our work, we examined the effect of a fructose-enriched diet on cardiac function and lipidome as well as proteome of cardiac muscle. Male Wistar rats were divided into two groups. The control group received a normal diet while the fructose-fed group received 60% fructose-supplemented chow for 24 weeks. Fasting blood glucose measurement and oral glucose tolerance test (OGTT) showed slightly but significantly elevated values due to fructose feeding indicating development of a prediabetic condition. Both echocardiography and isolated working heart perfusion performed at the end of the feeding protocol demonstrated diastolic cardiac dysfunction in the fructose-fed group. Mass spectrometry-based, high-performance lipidomic and proteomic analyses were executed from cardiac tissue. The lipidomic analysis revealed complex rearrangement of the whole lipidome with special emphasis on defects in cardiolipin remodeling. The proteomic analysis showed significant changes in 75 cardiac proteins due to fructose feeding including mitochondria-, apoptosis-, and oxidative stress-related proteins. Nevertheless, just very weak or no signs of apoptosis induction and oxidative stress were detected in the hearts of fructose-fed rats. Our results suggest that fructose feeding induces marked alterations in the cardiac lipidome, especially in cardiolipin remodeling, which leads to mitochondrial dysfunction and impaired cardiac function. However, at the same time, several adaptive responses are induced at the proteome level in order to maintain a homeostatic balance. These findings demonstrate that even very early stages of prediabetes can impair cardiac function and can result in significant changes in the lipidome and proteome of the heart prior to the development of excessive oxidative stress and cell damage.


Assuntos
Doenças Cardiovasculares/genética , Ecocardiografia/métodos , Frutose/efeitos adversos , Lipidômica/métodos , Estado Pré-Diabético/complicações , Proteômica/métodos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
16.
Front Oncol ; 9: 598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380269

RESUMO

Background: A deleterious, late-onset side effect of thoracic radiotherapy is the development of radiation-induced heart disease (RIHD). It covers a spectrum of cardiac pathology including also heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction. MicroRNA-212 (miR-212) is a crucial regulator of pathologic LVH via FOXO3-mediated pathways in pressure-overload-induced heart failure. We aimed to investigate whether miR-212 and its selected hypertrophy-associated targets play a role in the development of RIHD. Methods: RIHD was induced by selective heart irradiation (50 Gy) in a clinically relevant rat model. One, three, and nineteen weeks after selective heart irradiation, transthoracic echocardiography was performed to monitor cardiac morphology and function. Cardiomyocyte hypertrophy and fibrosis were assessed by histology at week 19. qRT-PCR was performed to measure the gene expression changes of miR-212 and forkhead box O3 (FOXO3) in all follow-up time points. The cardiac transcript level of other selected hypertrophy-associated targets of miR-212 including extracellular signal-regulated kinase 2 (ERK2), myocyte enhancer factor 2a (MEF2a), AMP-activated protein kinase, (AMPK), heat shock protein 40 (HSP40), sirtuin 1, (SIRT1), calcineurin A-alpha and phosphatase and tensin homolog (PTEN) were also measured at week 19. Cardiac expression of FOXO3 and phospho-FOXO3 were investigated at the protein level by Western blot at week 19. Results: In RIHD, diastolic dysfunction was present at every time point. Septal hypertrophy developed at week 3 and a marked LVH with interstitial fibrosis developed at week 19 in the irradiated hearts. In RIHD, cardiac miR-212 was overexpressed at week 3 and 19, and FOXO3 was repressed at the mRNA level only at week 19. In contrast, the total FOXO3 protein level failed to decrease in response to heart irradiation at week 19. Other selected hypertrophy-associated target genes failed to change at the mRNA level in RIHD at week 19. Conclusions: LVH in RIHD was associated with cardiac overexpression of miR-212. However, miR-212 seems to play a role in the development of LVH via FOXO3-independent mechanisms in RIHD. As a central regulator of pathologic remodeling, miR-212 might become a novel target for RIHD-induced LVH and heart failure.

17.
Sci Rep ; 9(1): 1302, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718600

RESUMO

Chronic kidney disease (CKD) is a public health problem that increases the risk of cardiovascular morbidity and mortality. Heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction is a common cardiovascular complication of CKD. MicroRNA-212 (miR-212) has been demonstrated previously to be a crucial regulator of pathologic LVH in pressure-overload-induced heart failure via regulating the forkhead box O3 (FOXO3)/calcineurin/nuclear factor of activated T-cells (NFAT) pathway. Here we aimed to investigate whether miR-212 and its hypertrophy-associated targets including FOXO3, extracellular signal-regulated kinase 2 (ERK2), and AMP-activated protein kinase (AMPK) play a role in the development of HFpEF in CKD. CKD was induced by 5/6 nephrectomy in male Wistar rats. Echocardiography and histology revealed LVH, fibrosis, preserved systolic function, and diastolic dysfunction in the CKD group as compared to sham-operated animals eight and/or nine weeks later. Left ventricular miR-212 was significantly overexpressed in CKD. However, expressions of FOXO3, AMPK, and ERK2 failed to change significantly at the mRNA or protein level. The protein kinase B (AKT)/FOXO3 and AKT/mammalian target of rapamycin (mTOR) pathways are also proposed regulators of LVH induced by pressure-overload. Interestingly, phospho-AKT/total-AKT ratio was increased in CKD without significantly affecting phosphorylation of FOXO3 or mTOR. In summary, cardiac overexpression of miR-212 in CKD failed to affect its previously implicated hypertrophy-associated downstream targets. Thus, the molecular mechanism of the development of LVH in CKD seems to be independent of the FOXO3, ERK1/2, AMPK, and AKT/mTOR-mediated pathways indicating unique features in this form of LVH.


Assuntos
Expressão Gênica , Hipertrofia Ventricular Esquerda/etiologia , MicroRNAs/genética , Insuficiência Renal Crônica/complicações , Animais , Biópsia , Modelos Animais de Doenças , Ecocardiografia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Perfilação da Expressão Gênica , Hipertrofia Ventricular Esquerda/diagnóstico , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos , Fosforilação , Ratos , Transdução de Sinais
18.
Front Physiol ; 9: 1648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534079

RESUMO

Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·-) and/or hydrogen peroxide (H2O2). O2·- reacts with nitric oxide (NO) forming peroxynitrite (ONOO-) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.

19.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424579

RESUMO

Nuclear, mitochondrial and cytoplasmic signal transducer and activator of transcription 3 (STAT3) regulates many cellular processes, e.g., the transcription or opening of mitochondrial permeability transition pore, and its activity depends on the phosphorylation of Tyr705 and/or Ser727 sites. In the heterogeneous network of cardiac cells, STAT3 promotes cardiac muscle differentiation, vascular element formation and extracellular matrix homeostasis. Overwhelming evidence suggests that STAT3 is beneficial for the heart, plays a role in the prevention of age-related and postpartum heart failure, protects the heart against cardiotoxic doxorubicin or ischaemia/reperfusion injury, and is involved in many cardioprotective strategies (e.g., ischaemic preconditioning, perconditioning, postconditioning, remote or pharmacological conditioning). Ischaemic heart disease is still the leading cause of death worldwide, and many cardiovascular risk factors contribute to the development of the disease. This review focuses on the effects of various cardiovascular risk factors (diabetes, aging, obesity, smoking, alcohol, depression, gender, comedications) on cardiac STAT3 under non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion injury with or without cardioprotective strategies.


Assuntos
Doenças Cardiovasculares/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Risco , Fator de Transcrição STAT3/química , Transdução de Sinais
20.
Sci Rep ; 8(1): 7647, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769710

RESUMO

The transcriptional regulator JDP2 (Jun dimerization protein 2) has been identified as a prognostic marker for patients to develop heart failure after myocardial infarction. We now performed in vivo studies on JDP2-overexpressing mice, to clarify the impact of JDP2 on heart failure progression. Therefore, during birth up to the age of 4 weeks cardiac-specific JDP2 overexpression was prevented by doxycycline feeding in transgenic mice. Then, JDP2 overexpression was started. Already after 1 week, cardiac function, determined by echocardiography, decreased which was also resembled on the cardiomyocyte level. After 5 weeks blood pressure declined, ejection fraction and cardiac output was reduced and left ventricular dilatation developed. Heart weight/body weight, and mRNA expression of ANP, inflammatory marker genes, collagen and fibronectin increased. Collagen 1 protein expression increased, and fibrosis developed. As an additional sign of elevated extracellular matrix remodeling, matrix metalloproteinase 2 activity increased in JDP2 mice. Thus, JDP2 overexpression is deleterious to heart function in vivo. It can be concluded that JDP2 overexpression provokes cardiac dysfunction in adult mice that is accompanied by hypertrophy and fibrosis. Thus, induction of JDP2 is a maladaptive response contributing to heart failure development.


Assuntos
Cardiomegalia/patologia , Fibrose/patologia , Insuficiência Cardíaca/patologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteínas Repressoras/metabolismo , Animais , Cardiomegalia/etiologia , Células Cultivadas , Fibrose/etiologia , Insuficiência Cardíaca/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...