Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 27(8): 233, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34324066

RESUMO

Accurate calculation of the acid dissociation constant (pKa) has fundamental importance for the description of molecular systems with pharmacological activities. The search for a more appropriate procedure for its determination is always welcome and has aroused increasing interest from the scientific community. In this sense, this work presents a computational study involving the combination of ten DFT functionals (M062X, M06L, B3LYP, BLYP, PBEPBE, BP86, LC-BLYP, SPBE, CAM-B3LYP, LC-PBEPBE) and HF method, eight basis set functions (6-311G, 6-311 + G, 6-311G(d,p), 6-311 + G(d,p), 6-311+ +G(d,p), 6-311(2d,2p), 6-311+ +G(2d,2p), and aug-cc-pVDZ), and three solvation models (SMD, PCM, and CPCM) for an accurate sulfachloropyridazine (SCR) pKa determination. It was found that the smallest deviation (0.02 unit of pKa) between the current study and experimental result was achieved with the BLYP/6-311 + G(d,p)/PCM combination. Therefore, this combination was extended to calculate the pKa of six SCR similar molecules selected through the eletroshape similarity method. For all these molecules, the difference between the obtained results and experimental data ranged between 0.14 and 0.69 units of pKa. This feature suggests that the obtained combination can determine pKa with experimental precision for complexes that are formed by sulfonamide functional group (SO2NHR). Graphical Abstract A computational study involving the combination of different levels of theory, basis sets and solvation models for an accurate sulfanamide pKa determination.

2.
Front Chem ; 6: 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713840

RESUMO

Although molecular collisions of noble gases (Ng) can be theoretically used to distinguish between the enantiomers of hydrogen peroxide - H2O2 (HP), little is known about the effects of HP-Ng interactions on the chiral rate. In this work, the chiral rate as a function of temperature (CRT) between enantiomeric conformations of HP and Ng (Ng=He, Ne, Ar, Kr, Xe, and Rn) are presented at MP2(full)/aug-cc-pVTZ level of theory through a fully basis set superposition error (BSSE) corrected potential energy surface. The results show that: (a) the CRT is highly affected even at a small decrease in the height of trans-barrier; (b) its smallest values occur with Ne for all temperatures between 100 and 4,000 K; (c) that the decrease of CRT shows an inverse correlation with respect to the average valence electron energy of the Ng and (d) Ne and He may be the noble gases more suitable for study the oriented collision dynamics of HP. In addition to binding energies, the electron density ρ and its Laplacian ∇2 ρ topological analyses were also performed within the atoms in molecules (AIM) theory in order to determine the nature of the HP-Ng interactions. The results of this work provide a more complete foundation on experiments to study HP's chirality using Ng in crossed molecular beams without a light source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...