Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Earths Future ; 10(11): e2022EF002803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36582412

RESUMO

The climate science and applications communities need a broad and demand-driven concept to assess physical climate conditions that are relevant for impacts on human and natural systems. Here, we augment the description of the "climatic impact-driver" (CID) approach adopted in the Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report. CIDs are broadly defined as "physical climate system conditions (e.g., means, events, and extremes) that affect an element of society or ecosystems. Depending on system tolerance, CIDs and their changes can be detrimental, beneficial, neutral, or a mixture of each across interacting system elements and regions." We give background information on the IPCC Report process that led to the development of the 7 CID types (heat and cold, wet and dry, wind, snow and ice, coastal, open ocean, and other) and 33 distinct CID categories, each of which may be evaluated using a variety of CID indices. This inventory of CIDs was co-developed with WGII to provide a useful collaboration point between physical climate scientists and impacts/risk experts to assess the specific climatic phenomena driving sectoral responses and identify relevant CID indices within each sector. The CID Framework ensures that a comprehensive set of climatic conditions informs adaptation planning and risk management and may also help prioritize improvements in modeling sectoral dynamics that depend on climatic conditions. CIDs contribute to climate services by increasing coherence and neutrality when identifying and communicating relevant findings from physical climate research to risk assessment and planning activities.

2.
J Biogeogr ; 49(8): 1420-1442, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247109

RESUMO

Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040-2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%-23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...