Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 20(1): 79-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337850

RESUMO

Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.


Assuntos
Carbonatos , Microbiota , Biofilmes , Carbonato de Cálcio/química , Precipitação Química , Lagos
2.
Geobiology ; 19(3): 250-260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608990

RESUMO

The appearance and subsequent evolution of land plants is among the most important events in the earth system. Plant resulted in a change of earth surface albedo and the hydrological cycle, as well as increased rock weatherability thereby causing a persistent change in atmospheric CO2 and O2 . Land plants are, however, themselves dependent on O2 for respiration and long-term survival, something not considered in current geochemical models. In this perspective, we highlight two aspects of land plants' dependency on O2 relevant for the geobiological community: (a) fossil root systems can be used as a proxy for minimum levels of past atmospheric O2 consistent with a given fossil root depth; and (b) by identifying a positive feedback mechanism involving atmospheric O2 , root intensity, terrestrial primary production and organic carbon burial. As an example, we consider archaeopterid fossil root systems, resembling those of modern mature conifers. Our soil-plant model suggest that atmospheric O2 with 1 SD probably reached pressures of 18.2 ± 1.9 kPa and 16.8 ± 2.1 kPa by the Middle and Late Devonian, respectively, that is 86 ± 9% and 79 ± 10% of the present-day 21.2 kPa.


Assuntos
Fósseis , Oxigênio , Atmosfera , Dióxido de Carbono , Retroalimentação , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...