Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Dalton Trans ; 52(17): 5771-5779, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37038971

RESUMO

This study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6-δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1-xLaxCo2O6-δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated materials are thermodynamically stable relative to binary oxides and exhibit strongly exothermic enthalpies of formation. Moreover, BaGd0.3La0.7Co2O6-δ and BaGd0.8La0.2Co2O6-δ remain the main perovskite structure up to 3 bars of water vapor at 400 °C. At higher steam pressure, reaching 10 bar at 300 °C, the partial decomposition to constituent oxides and hydroxides was observed. The BGLC compounds exhibit higher negative formation enthalpies in comparison to single-Ln compositions, which does not translate into higher chemical stability under high steam pressures since the BLnC series retained the main perovskite structure at higher temperatures as well as in higher water vapor pressures.

2.
Dalton Trans ; 51(48): 18667-18677, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36448547

RESUMO

Ba1-xGd1-yLax+yCo2O6-δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is substituted for Ba and Gd. The dominating phase is the double perovskite structure Pmmm, which is A-site ordered along the c-axes and with O vacancy ordering along the b-axis in the Ln-layer. Phases emerging when substituting La for Ba are orthorhombic Ba-deficient Pbnm and cubic LaCoO3-based R3̄c. When La is almost completely substituted for Gd, the material can be stabilised in Pmmm, or cubic Pm3̄m, depending on thermal and atmospheric history. We list thermal expansion coefficients for x = 0-0.3, y = 0.2.

3.
Phys Chem Chem Phys ; 23(33): 17836-17847, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34612273

RESUMO

Metal hydroborates are versatile materials with interesting properties related to energy storage and cation conductivity. The hydrides containing B3H8- (triborane, or octahydrotriborate) ions have been at the center of attention for some time as reversible intermediates in the decomposition of BH4- (3BH4-↔ B3H8- + 2H2), and as conducting media in electrolytes based on boron-hydride cage clusters. We report here the first observation of two phase transitions in CsB3H8 prior to its decomposition above 230 °C. The previously reported orthorhombic room temperature phase (here named α-CsB3H8) with the space group Ama2 changes into a new phase with the space group Pnma at 73 °C (here named ß-CsB3H8), and then into a face-centered cubic phase, here named γ-CsB3H8, at 88 °C. These phases are not stable at room temperature thus requiring in situ measurements for their characterization. The phase transitions and decomposition pathway of CsB3H8 were studied with in situ synchrotron powder X-ray diffraction (SR-PXD), in situ and ex situ vibrational spectroscopies (Raman and FTIR), and differential-scanning calorimetry combined with thermo-gravimetric analysis (DSC-TGA). The structure determination was validated by vibrational spectroscopy analysis and modeling of the periodic structures by density functional methods. In γ-CsB3H8, a significant disorder in B3H8- positions and orientations was found which can potentially benefit cation conducting properties through the paddle mechanism.

4.
ACS Appl Mater Interfaces ; 13(17): 20313-20325, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904298

RESUMO

Water photoelectrolysis has the potential to produce renewable hydrogen fuel, therefore addressing the intermittent nature of sunlight. Herein, a monolithic, photovoltaic (PV)-assisted water electrolysis device of minimal engineering and of low (in the µg range) noble-metal-free catalysts loading is presented for unassisted water splitting in alkaline media. An efficient double perovskite cobaltite catalyst, originally developed for high-temperature proton-conducting ceramic electrolyzers, possesses high activity for the oxygen evolution reaction in alkaline media at room temperatures too. Ba1-xGd1-yLax+yCo2O6-δ (BGLC) is combined with a NiMo cathode, and a solar-to-hydrogen efficiency of 6.6% in 1.0 M NaOH, under 1 sun simulated illumination for 71 h, is demonstrated. This work highlights how readily available earth-abundant materials and established PV methods can achieve high performance and stable and monolithic photoelectrolysis devices with potential for full-scale applications.

5.
Inorg Chem ; 60(2): 1124-1132, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33370527

RESUMO

A number of high-entropy alloys (HEAs) in the TiVZrNbHf system have been synthesized by arc melting and systematically evaluated for their hydrogen sorption characteristics. A total of 21 alloys with varying elemental compositions were investigated, and 17 of them form body-centered-cubic (bcc) solid solutions in the as-cast state. A total of 15 alloys form either face-centered-cubic (fcc) or body-centered-tetragonal (bct) hydrides after exposure to gaseous hydrogen with hydrogen per metal ratios (H/M) as high as 2.0. Linear trends are observed between the volumetric expansion per metal atom [(V/Z)fcc/bct - (V/Z)bcc/hcp]/(V/Z)bcc/hcp with the valence electron concentration and average Pauling electronegativity (χp) of the alloys. However, no correlation was observed between the atomic size mismatch, δ, and any investigated hydrogen sorption property such as the maximum storage capacity or onset temperature for hydrogen release.

6.
Sci Rep ; 10(1): 9080, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493958

RESUMO

Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4)2, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4)2 is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4)2 and ball milled, amorphous Mg(BH4)2 confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4)2 at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4] units, revealing a much larger fraction of activated [BH4] rotations in amorphous Mg(BH4)2. These findings suggest that the conduction process in amorphous Mg(BH4)2 is supported by stronger rotational mobility, which is proposed to be the so-called "paddle-wheel" mechanism.

7.
Sci Rep ; 10(1): 9000, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488066

RESUMO

The formation, structure and deuterium desorption properties of Mg2FexCo(1-x)Dy (0 ≤ x ≤ 1 and 5 ≤ y ≤ 6) complex hydrides were investigated. The synthesis was carried out by reactive ball milling, using a mixture of powders of the parent elements in D2 atmosphere. The formation of quaternary deuterides was identified from Rietveld refinements of powder X-Ray diffraction and powder neutron diffraction patterns, and from infrared attenuated total reflectance analysis. It was observed that the crystal structure of deuterides depends on the transition metal fraction. For Co-rich compositions, i.e. up to x = 0.1, hydrides have the tetragonal distorted CaF2-type structure (space group P4/nmm) of Mg2CoD5 at room temperature. For Fe-rich compositions, i.e. x ≥ 0.5, a cubic hydride is observed, with the same K2PtCl6-type structure (space group Fm[Formula: see text]m) as Mg2FeD6 and as Mg2CoD5 at high temperatures. For x = 0.3, both the cubic and the tetragonal deuterides are detected. Differential scanning calorimetry coupled with thermogravimetric and temperature programmed desorption analyses show rather similar deuterium desorption properties for all samples, without significant changes as a function of composition. Finally, hydrogen sorption experiments performed for Mg2Fe0.5Co0.5H5.5 at 30 bar of H2 and 673 K showed reversible reactions, with good kinetic for both absorption and desorption of hydrogen.

8.
Phys Chem Chem Phys ; 22(25): 13872-13879, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32391527

RESUMO

The properties of the mixed system LiBH4-LiCl-P2S5 are studied with respect to all-solid-state batteries. The studied material undergoes an amorphization upon heating above 60 °C, accompanied with increased Li+ conductivity beneficial for battery electrolyte applications. The measured ionic conductivity is ∼10-3 S cm-1 at room temperature with an activation energy of 0.40(2) eV after amorphization. Structural analysis and characterization of the material suggest that BH4 groups and PS4 may belong to the same molecular structure, where Cl ions interplay to accommodate the structural unit. Thanks to its conductivity, ductility and electrochemical stability (up to 5 V, Au vs. Li+/Li), this new electrolyte is successfully tested in battery cells operated with a cathode material (layered TiS2, theo. capacity 239 mA h g-1) and Li anode resulting in 93% capacity retention (10 cycles) and notable cycling stability under the current density ∼12 mA g-1 (0.05C-rate) at 50 °C. Further advanced characterisation by means of operando synchrotron X-ray diffraction in transmission mode contributes explicitly to a better understanding of the (de)lithiation processes of solid-state battery electrodes operated at moderate temperatures.

9.
Dalton Trans ; 47(25): 8307-8319, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29892753

RESUMO

In this work, praseodymium(iii) borohydride, Pr(BH4)3, and an isotopically enriched analogue, Pr(11BD4)3, are prepared by a new route via a solvate complex, Pr(11BD4)3S(CH3)2. Nd(BH4)3 was synthesized using the same method and the structures, polymorphic transformations, and thermal stabilities of these compounds are investigated in detail. α-Pr(BH4)3 and α-Nd(BH4)3 are isostructural with cubic unit cells (Pa3[combining macron]) stable at room temperature (RT) and a unit cell volume per formula unit (V/Z) of 180.1 and 175.8 Å3, respectively. Heating α-Pr(BH4)3 to T ∼ 190 °C, p(Ar) = 1 bar, introduces a transition to a rhombohedral polymorph, r-Pr(BH4)3 (R3[combining macron]c) with a smaller unit cell volume and a denser structure, V/Z = 156.06 Å3. A similar transition was not observed for Nd(BH4)3. However, heat treatment of α-Pr(BH4)3, at T ∼ 190 °C, p(H2) = 40 bar and α-Nd(BH4)3, at T ∼ 270 °C, p(H2) = 98 bar facilitates reversible formation of another three cubic polymorph, denoted as ß, ß' and ß''-RE(BH4)3 (Fm3[combining macron]c). Moreover, the transition ß- to ß'- to ß''- is considered a rare example of stepwise negative thermal expansion. For Pr(BH4)3, ∼2/3 of the sample takes this route of transformation whereas in argon only ∼5 wt%, and the remaining transforms directly from α- to r-Pr(BH4)3. The ß-polymorphs are porous with V/Z = 172.4 and 172.7 Å3 for ß''-RE(BH4)3, RE = Pr or Nd, respectively, and are stabilized by the elevated hydrogen pressures. The polymorphic transitions occur due to rotation of RE(BH4)6 octahedra without breaking or forming chemical bonds. Structural DFT optimization reveals the decreasing stability of α-Pr(BH4)3 > ß-Pr(BH4)3 > r-Pr(BH4)3.

10.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29512391

RESUMO

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

11.
RSC Adv ; 8(41): 23468-23474, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540131

RESUMO

Several studies have demonstrated that MgH2 is a promising conversion-type anode toward Li. A major obstacle is the reversible capacity during cycling. Electrochemical co-existence of a mixed metal hydride-oxide conversion type anode is demonstrated for lithium ion batteries using a solid-state electrolyte. 75MgH2·25CoO anodes are obtained from optimized mixing conditions avoiding reactions occurring during high-energy ball-milling. Electrochemical tests are carried out to investigate the cycling capability and reversibility of the on-going conversion reactions. The cycling led to formation of a single-plateau nanocomposite electrode with higher reversibility yield, lowered discharge-charge hysteresis and mitigated kinetic effect at high C-rate compared to MgH2 anodes. It is believed that reduced diffusion pathways and less polarized electrodes are the origin of the improved properties. The designed composite-electrode shows good preservation and suitability with LiBH4 solid electrolyte as revealed from electron microscopy analyses and X-ray photoelectron spectroscopy.

12.
RSC Adv ; 8(49): 27645-27653, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35542747

RESUMO

Magnesium borohydride (Mg(BH4)2) is a promising material for solid state hydrogen storage. However, the predicted reversible hydrogen sorption properties at moderate temperatures have not been reached due to sluggish hydrogen sorption kinetics. Hydrogen (H) → deuterium (D) exchange experiments can contribute to the understanding of the stability of the BH4 - anion. Pure γ-Mg(BH4)2, ball milled Mg(BH4)2 and composites with the additives nickel triboride (Ni3B) and diniobium pentaoxide (Nb2O5) have been investigated. In situ Raman analysis demonstrated that in pure γ-Mg(BH4)2 the isotopic exchange reaction during continuous heating started at ∼80 °C, while the ball milled sample did not show any exchange at 3 bar D2. However, during ex situ exchange reactions investigated by infrared (IR) and thermogravimetric (TG) analyses a comparable H → D exchange during long exposures (23 h) to deuterium atmosphere was observed for as received, ball milled and γ-Mg(BH4)2 + Nb2O5, while the Ni3B additive hindered isotopic exchange. The specific surface areas (SSA) were shown to be very different for as received γ-Mg(BH4)2, BET area = 900 m2 g-1, and ball milled Mg(BH4)2, BET area = 30 m2 g-1, respectively, and this explains why no gas-solid H(D) diffusion was observed for the ball milled (amorphous) Mg(BH4)2 during the short time frames of in situ Raman measurements. The heat treated ball milled sample partially regained the porous γ-Mg(BH4)2 structure (BET area = 560 m2 g-1). This in combination with the long reaction times allowing for the reaction to approach equilibrium explains the observed gas-solid H(D) diffusion during long exposure. We have also demonstrated that a small amount of D can be substituted in both high surface area and low surface area samples at room temperature proving that the B-H bonds in Mg(BH4)2 can be challenged at these mild conditions.

13.
Sci Rep ; 7(1): 13760, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062049

RESUMO

Thermoelectric application of half-Heusler compounds suffers from their fairly high thermal conductivities. Insight into how effective various scattering mechanisms are in reducing the thermal conductivity of fabricated XNiSn compounds (X = Hf, Zr, Ti, and mixtures thereof) is therefore crucial. Here, we show that such insight can be obtained through a concerted theory-experiment comparison of how the lattice thermal conductivity κ Lat(T) depends on temperature and crystallite size. Comparing theory and experiment for a range of Hf0.5Zr0.5NiSn and ZrNiSn samples reported in the literature and in the present paper revealed that grain boundary scattering plays the most important role in bringing down κ Lat, in particular so for unmixed compounds. Our concerted analysis approach was corroborated by a good qualitative agreement between the measured and calculated κ Lat of polycrystalline samples, where the experimental average crystallite size was used as an input parameter for the calculations. The calculations were based on the Boltzmann transport equation and ab initio density functional theory. Our analysis explains the significant variation of reported κ Lat of nominally identical XNiSn samples, and is expected to provide valuable insights into the dominant scattering mechanisms even for other materials.

14.
Dalton Trans ; 45(47): 19002-19011, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27853777

RESUMO

Two new bimetallic sodium or potassium lanthanum borohydrides, NaLa(BH4)4 and K3La(BH4)6, are formed using La(BH4)3 free of metal halide by-products. NaLa(BH4)4 crystallizes in an orthorhombic crystal system with unit cell parameters, a = 6.7987(19), b = 17.311(5), c = 7.2653(19) Å and space group symmetry Pbcn. This compound has a new structure type built from brucite-like layers of octahedra (hcp packing of anions) with half of the octahedral sites empty leading to octahedral chains similar to rutile (straight chains) or α-PbO2 (zig-zag chains). K3La(BH4)6 crystallizes in the monoclinic crystal system with unit cell parameters a = 7.938(2), b = 8.352(2), c = 11.571(3) Å, ß = 90.19(6)° and space group P21/n with a double-perovskite type structure. Thermogravimetric analysis shows a mass loss of 5.86 and 2.83 wt% for NaLa(BH4)4 and K3La(BH4)6, respectively, in the temperature range of room temperature to 400 °C. Mass spectrometry shows that hydrogen release starts at 212 and 275 °C for NaLa(BH4)4 and K3La(BH4)6, respectively and confirms that no diborane is released. Sieverts' measurements reveal that 2.03 and 0.49 wt% of hydrogen can be released from the NaLa(BH4)4 and K3La(BH4)6, respectively, during the second hydrogen desorption cycle at the selected physical condition for hydrogen absorption.

15.
Chem Commun (Camb) ; 52(79): 11760-11763, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27722247

RESUMO

We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2- ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

16.
Phys Chem Chem Phys ; 18(35): 24387-95, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27533740

RESUMO

Rare earth (RE) metal borohydrides are receiving immense consideration as possible hydrogen storage materials and solid-state Li-ion conductors. In this study, halide free Er(BH4)3 and Pr(BH4)3 have been successfully synthesized for the first time by the combination of mechanochemical milling and/or wet chemistry. Rietveld refinement of Er(BH4)3 confirmed the formation of two different Er(BH4)3 polymorphs: α-Er(BH4)3 with space group Pa3[combining macron], a = 10.76796(5) Å, and ß-Er(BH4)3 in Pm3[combining macron]m with a = 5.4664(1) Å. A variety of Pr(BH4)3 phases were found after extraction with diethyl ether: α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2465(1) Å, ß-Pr(BH4)3 in Pm3[combining macron]m with a = 5.716(2) Å and LiPr(BH4)3Cl in I4[combining macron]3m, a = 11.5468(3) Å. Almost phase pure α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2473(2) Å was also synthesized. The thermal decomposition of Er(BH4)3 and Pr(BH4)3 proceeded without the formation of crystalline products. Rehydrogenation, as such, was not successful. However, addition of LiH promoted the rehydrogenation of RE hydride phases and LiBH4 from the decomposed RE(BH4)3 samples.

17.
Inorg Chem ; 55(15): 7630-6, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27428808

RESUMO

The crystal structure of the hydrated Ruddlesden-Popper (RP) phase LaSr3Fe3O8(OH)2·xH2O has been investigated with focus on the orientation of the hydroxide groups and intercalated water. Combined powder synchrotron X-ray and neutron diffraction techniques were used. On the basis of Rietveld refinements and Fourier maps, intercalated water was found to form a network within the rock-salt-type layers of the RP phase with a likely dynamic interchange between different orientations. The water content was determined at different temperatures using thermogravimetric analysis, with findings showing that the water occupation follows a linear temperature dependence. The magnetic properties of LaSr3Fe3O8(OH)2·xH2O are significantly influenced by hydration, but no long-range order was observed. The relationship between the physical properties and crystal structure is discussed in detail.

18.
Inorg Chem ; 55(1): 345-52, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26669218

RESUMO

The hydride NdGaH1+x (x ≈ 0.66) and its deuterized analogue were obtained by sintering the Zintl phase NdGa with the CrB structure in a hydrogen atmosphere at pressures of 10-20 bar and temperatures near 300 °C. The system NdGa/NdGaH1+x exhibits reversible H storage capability. H uptake and release were investigated by kinetic absorption measurements and thermal desorption mass spectroscopy, which showed a maximum H concentration corresponding to "NdGaH2" (0.93 wt % H) and a two-step desorption process, respectively. The crystal structure of NdGaH1+x was characterized by neutron diffraction (P21/m, a = 4.1103(7), b = 4.1662(7), c = 6.464(1) Å, ß = 108.61(1)° Z = 2). H incorporates in NdGa by occupying two distinct positions, H1 and H2. H1 is coordinated in a tetrahedral fashion by Nd atoms. The H2 position displays flexible occupancy, and H2 atoms attain a trigonal bipyramidal coordination by centering a triangle of Nd atoms and bridging two Ga atoms. The phase stability and electronic structure of NdGaH1+x were analyzed by first-principles DFT calculations. NdGaH1H2 (NdGaH2) may be expressed as Nd(3+)(H1(-))[GaH2](2-). The two-dimensional polyanion [GaH](2-) features linear -H-Ga-H-Ga- chains with alternating short (1.8 Å) and long (2.4 Å) Ga-H distances, which resembles a Peierls distortion. H2 deficiency (x < 1) results in the fragmentation of chains. For x = 0.66 arrangements with five-atom moieties, Ga-H-Ga-H-Ga are energetically most favorable. From magnetic measurements, the Curie-Weiss constant and effective magnetic moment of NdGaH1.66 were obtained. The former indicates antiferromagnetic interactions, and the latter attains a value of ∼3.6 µB, which is typical for compounds containing Nd(3+) ions.

19.
Phys Chem Chem Phys ; 15(27): 11226-30, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23752140

RESUMO

Mechanochemical reactions between KBH4 and KBF4 result in the formation of potassium fluoroborohydrides K(BH(x)F(4-x)) (x = 0-4), as determined by (11)B and (19)F solid state NMR. The materials maintain the cubic KBH4 structure. Thermogravimetric (TG) data for a ball-milled sample with KBH4 : KBF4 = 3 : 1 are consistent with only desorption of hydrogen.


Assuntos
Boroidretos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Termogravimetria
20.
Inorg Chem ; 52(9): 4771-3, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594035

RESUMO

The stability of a negatively charged polyethylene-structured [GaH2]n(n-) cluster ion was investigated by varying the K(+)/Rb(+) ratio in ((K(x)Rb(1-x))n[GaH2]n (0 ≤ x ≤ 1). Neutron, X-ray, and IR spectroscopies were used to characterize the new phases. Between the limiting compositions Kn[GaH2]n and Rbn[GaH2]n, the [GaH2]n(n-) chains remained almost identical, indicating a stable specie. For rubidium-rich samples up to a potassium content corresponding to (K0.5Rb0.5)n[GaH2]n, two phases coexist in the samples, RbGaH2 and (K0.5Rb0.5)n[GaH2]n, with a ratio mirroring the relative alkali-ion content. The two phases have a different alignment of the [GaH2]n(n-) chains. For potassium-rich samples beyond (K0.5Rb0.5)n[GaH2]n, the samples were single-phased. The unit cell volume of the new (K0.5Rb0.5)n[GaH2]n structure type shrinks according to Vegard's law as smaller K(+) ions substitute for larger Rb(+) ions. The [GaH2]n(n-) chains remained, however, almost identical. IR spectra from the different phases were very similar, exhibited stretching, scissoring, and rocking modes similar to those in ordinary polyethylene, but shifted to lower frequencies, reflecting weaker Ga-H bonds. The existence of stable Kn[GaH2]n and Rbn[GaH2]n, would help to dehydrogenate KGaH4 and RbGaH4 upon heating. If this could be transferred to lighter alanates and borohydrides, it could be possible to develop more functional hydrogen-storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...