Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(2): e29198, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383948

RESUMO

BACKGROUND: Insulin analogues comprising acidic amino acid substitutions at position B10 have previously been shown to display increased mitogenic potencies compared to human insulin and the underlying molecular mechanisms have been subject to much scrutiny and debate. However, B10 is still an attractive position for amino acid substitutions given its important role in hexamer formation. The aim of this study was to investigate the relationships between the receptor binding properties as well as the metabolic and mitogenic potencies of a series of insulin analogues with different amino acid substitutions at position B10 and to identify a B10-substituted insulin analogue without an increased mitogenic to metabolic potency ratio. METHODOLOGY/PRINCIPAL FINDINGS: A panel of ten singly-substituted B10 insulin analogues with different amino acid side chain characteristics were prepared and insulin receptor (both isoforms) and IGF-I receptor binding affinities using purified receptors, insulin receptor dissociation rates using BHK cells over-expressing the human insulin receptor, metabolic potencies by lipogenesis in isolated rat adipocytes, and mitogenic potencies using two different cell types predominantly expressing either the insulin or the IGF-I receptor were systematically investigated. Only analogues B10D and B10E with significantly increased insulin and IGF-I receptor affinities as well as decreased insulin receptor dissociation rates displayed enhanced mitogenic potencies in both cell types employed. For the remaining analogues with less pronounced changes in receptor affinities and insulin receptor dissociation rates, no apparent correlation between insulin receptor occupancy time and mitogenicity was observed. CONCLUSIONS/SIGNIFICANCE: Several B10-substituted insulin analogues devoid of disproportionate increases in mitogenic compared to metabolic potencies were identified. In the present study, receptor binding affinity rather than insulin receptor off-rate appears to be the major determinant of both metabolic and mitogenic potency. Our results also suggest that the increased mitogenic potency is attributable to both insulin and IGF-I receptor activation.


Assuntos
Insulina/análogos & derivados , Insulina/química , Substituição de Aminoácidos , Animais , Antígenos CD/química , Bioquímica/métodos , Linhagem Celular , Cricetinae , DNA/química , Humanos , Concentração Inibidora 50 , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Ratos , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Biochem J ; 440(3): 301-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21851336

RESUMO

The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/análogos & derivados , Receptor de Insulina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Ligação Competitiva , Glicemia , Encéfalo/metabolismo , Células Cultivadas , Expressão Gênica , Glicogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulina/farmacologia , Rim/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Fosforilação , Cultura Primária de Células , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Baço/metabolismo , Sus scrofa
3.
PLoS One ; 6(5): e20288, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625452

RESUMO

BACKGROUND: The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. METHODOLOGY/PRINCIPAL FINDINGS: Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. CONCLUSIONS/SIGNIFICANCE: We have discovered a new class of IR isoform-selective insulin analogues with 2-4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.


Assuntos
Insulina/metabolismo , Engenharia de Proteínas , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Cristalografia por Raios X , Humanos , Insulina/análogos & derivados , Mutagênese , Conformação Proteica , Isoformas de Proteínas/química , Receptor de Insulina/química , Receptor de Insulina/genética
4.
Biochemistry ; 47(16): 4743-51, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18376848

RESUMO

Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.


Assuntos
Insulina/química , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Solventes , Expressão Gênica , Humanos , Insulina/análogos & derivados , Insulina/genética , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Med Chem ; 46(15): 3333-41, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12852764

RESUMO

A novel class of GSK-3 inhibitors with favorable water solubility was identified in a HTS screen. SAR studies identified bioisosteric structural moieties in this class of compounds. The compounds were tested in a GSK-3 inhibition assay at 100 microM ATP giving IC(50)'s in the range from 0.1 to 10 microM. The compounds are ATP competitive inhibitors. They modulate glycogen metabolism and stimulate the accumulation of intracellular beta-catenin in whole cell assays with EC(50)'s in the range from 2 to 18 microM and 4.5-44 microM, respectively. For selected compounds, only a 10-fold lower potency was obtained in cellular assays compared to the potency obtained for inhibition of the isolated enzyme, reflecting a good cell permeability of this compound class. At 10 microM of test compound a 3-fold stimulation of the glycogen synthesis in rat soleus muscle was obtained compared to the level of glycogen synthesis observed at 0.2 nM insulin. This stimulation of glycogen synthesis is comparable to the maximal stimulation by insulin itself.


Assuntos
Inibidores Enzimáticos/síntese química , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Oxidiazóis/síntese química , Triazóis/síntese química , Animais , Células CHO , Cricetinae , Proteínas do Citoesqueleto/metabolismo , Bases de Dados Factuais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicogênio/biossíntese , Humanos , Técnicas In Vitro , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxidiazóis/química , Oxidiazóis/farmacologia , Ratos , Ratos Wistar , Solubilidade , Relação Estrutura-Atividade , Transativadores/metabolismo , Triazóis/química , Triazóis/farmacologia , Água , beta Catenina
6.
J Biol Chem ; 277(21): 18245-8, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11923277

RESUMO

Adaptation to efficient heterologous expression is a prerequisite for recombinant proteins to fulfill their clinical and biotechnological potential. We describe a rational strategy to optimize the secretion efficiency in yeast of an insulin precursor by structure-based engineering of the folding stability. The yield of a fast-acting insulin analogue (Asp(B28)) expressed in yeast was enhanced 5-fold by engineering a specific interaction between an aromatic amino acid in the connecting peptide and a phenol binding site in the hydrophobic core of the molecule. This insulin precursor is characterized by significantly enhanced folding stability. The improved folding properties enhanced the secretion efficiency of the insulin precursor from 10 to 50%. The precursor remains fully in vitro convertible to mature fast-acting insulin.


Assuntos
Insulina/genética , Engenharia de Proteínas , Saccharomyces cerevisiae/genética , Insulina/química , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...