Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IMA Fungus ; 15(1): 10, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582937

RESUMO

The Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.

2.
IMA Fungus ; 14(1): 3, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726175

RESUMO

The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.

3.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438621

RESUMO

During the last two decades, whole-genome sequencing has revolutionized genetic research in all kingdoms, including fungi. More than 1000 fungal genomes have been submitted to sequence databases, mostly obtained through second generation short-read DNA sequencing. As a result, highly fragmented genome drafts have typically been obtained. However, with the emergence of third generation long-read DNA sequencing, the assembly challenge can be overcome and highly contiguous assemblies obtained. Such attractive results, however, are extremely dependent on the ability to extract highly purified high molecular weight (HMW) DNA. Extraction of such DNA is currently a significant challenge for all species with cell walls, not least fungi. In this study, four isolates of filamentous ascomycetes (Apiospora pterospermum, Aspergillus sp. (subgen. Cremei), Aspergillus westerdijkiae, and Penicillium aurantiogriseum) were used to develop extraction and purification methods that result in HMW DNA suitable for third generation sequencing. We have tested and propose two straightforward extraction methods based on treatment with either a commercial kit or traditional phenol-chloroform extraction both in combination with a single commercial purification method that result in high quality HMW DNA from filamentous ascomycetes. Our results demonstrated that using these DNA extraction methods and coverage, above 75 x of our haploid filamentous ascomycete fungal genomes result in complete and contiguous assemblies.


Assuntos
Ascomicetos , Sequenciamento por Nanoporos , Ascomicetos/genética , DNA , Genoma Fúngico , Peso Molecular
4.
J Nat Prod ; 84(8): 2070-2080, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34292732

RESUMO

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cß of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Proteínas Fúngicas/genética , Fusarium/genética , Estrutura Molecular , Família Multigênica , Peptídeo Sintases/genética , Triticum/microbiologia
5.
PLoS One ; 15(6): e0235568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598376

RESUMO

Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.


Assuntos
Cianoacrilatos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fusarium/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos
6.
Fungal Genet Biol ; 136: 103314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809785

RESUMO

Fusarium pseudograminearum (Fp), the causative fungal pathogen of the diseases Fusarium crown rot, is an important constraint to cereals production in many countries including Australia. Fp produces a number of secondary metabolites throughout its life cycle. One of these metabolites, the cyclic lipopeptide fusaristatin A, is encoded by a specific gene cluster containing a polyketide synthase and a three-module non-ribosomal peptide synthetase. However, a recent survey of Fp populations across Australia suggests that this cluster may only be present in a subset of isolates from Western Australia (WA). In this study, we screened 319 Fp isolates from WA and 110 Fp isolates from the Australian eastern states of New South Wales, Victoria, Queensland and South Australia to examine the distribution of this gene cluster among Australian Fp populations. The fusaristatin A gene cluster was found to be present in ~50% of Fp isolates from WA but completely absent in Fp isolates from eastern states. To determine its potential function, mutants of the fusaristatin A gene cluster were generated by disrupting the non-ribosomal peptide synthetase and polyketide synthase genes simultaneously in two different parental backgrounds. The mutants showed increased growth rates and were significantly more aggressive than their respective parental strains on wheat in crown rot pathogenicity assays. This suggested that fusaristatin A has a negative effect on fungal development and aggressiveness. The possible reasons for the geographically restricted presence of the fusaristatin A gene cluster and its role in fungal biology are discussed.


Assuntos
Depsipeptídeos/biossíntese , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Triticum/microbiologia , Austrália , DNA Fúngico , Grão Comestível/microbiologia , Proteínas Fúngicas , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Interações entre Hospedeiro e Microrganismos , Família Multigênica , Peptídeo Sintases/genética , Doenças das Plantas/microbiologia , Policetídeo Sintases/genética
7.
Fungal Biol ; 123(3): 255-266, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30798881

RESUMO

Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusariumgraminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.


Assuntos
Citocininas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Fusariose , Hifas/metabolismo , Plântula/microbiologia , Triticum/microbiologia
8.
Pestic Biochem Physiol ; 134: 24-30, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27914536

RESUMO

Real-time imaging was used to study the effects of a novel Fusarium-specific cyanoacrylate fungicide (JS399-19) on growth and morphology of four Fusarium sp. This fungicide targets the motor domain of type I myosin. Fusarium graminearum PH-1, Fusarium solani f. sp. pisi 77-13-4, Fusarium avenaceum IBT8464, and Fusarium avenaceum 05001, which has a K216Q amino-acid substitution at the resistance-implicated site in its myosin type I motor domain, were analyzed. Real-time imaging shows that JS399-19 inhibits fungal growth but not to the extent previously reported. The fungicide causes the hypha to become entangled and unable to extend vertically. This implies that type I myosin in Fusarium is essential for hyphal and mycelia propagation. The K216Q substitution correlates with reduced susceptibility in F. avenaceum.


Assuntos
Aminoácidos/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fenilpropionatos/farmacologia , Sequência de Aminoácidos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/química , Fusarium/citologia , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Microscopia , Miosina Tipo I/química
9.
Int J Food Microbiol ; 155(3): 128-36, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22377171

RESUMO

Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework for future polyketide synthases (PKSs) and nonribosomal peptides synthetases (NRPSs) nomenclature assignment and classification. Sequence similarities of the adenylation and ketosynthase domain sequences were used to group the identified NRPS and PKS genes. We present the current state of knowledge of PKS and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential as producers of known bioactive compounds.


Assuntos
Fusarium/enzimologia , Genes Fúngicos , Peptídeo Sintases/genética , Policetídeo Sintases/genética , DNA Fúngico/genética , Fusarium/genética , Família Multigênica , Peptídeo Sintases/classificação , Filogenia , Policetídeo Sintases/classificação , Análise de Sequência de DNA
10.
Eukaryot Cell ; 9(8): 1225-35, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543064

RESUMO

Methylenetetrahydrofolate reductases (MTHFRs) play a key role in biosynthesis of methionine and S-adenosyl-l-methionine (SAM) via the recharging methionine biosynthetic pathway. Analysis of 32 complete fungal genomes showed that fungi were unique among eukaryotes by having two MTHFRs, MET12 and MET13. The MET12 type contained an additional conserved sequence motif compared to the sequences of MET13 and MTHFRs from other eukaryotes and bacteria. Targeted gene replacement of either of the two MTHFR encoding genes in Fusarium graminearum showed that they were essential for survival but could be rescued by exogenous methionine. The F. graminearum strain with a mutation of MET12 (FgDeltaMET12) displayed a delay in the production of the mycelium pigment aurofusarin and instead accumulated nor-rubrofusarin and rubrofusarin. High methionine concentrations or prolonged incubation eventually led to production of aurofusarin in the MET12 mutant. This suggested that the chemotype was caused by a lack of SAM units for the methylation of nor-rubrofusarin to yield rubrofusarin, thereby imposing a rate-limiting step in aurofusarin biosynthesis. The FgDeltaMET13 mutant, however, remained aurofusarin deficient at all tested methionine concentrations and instead accumulated nor-rubrofusarin and rubrofusarin. Analysis of MET13 mutants in F. graminearum and Aspergillus nidulans showed that both lacked extracellular reduction potential and were unable to complete mycelium pigment biosynthesis. These results are the first to show that MET13, in addition to its function in methionine biosynthesis, is required for the generation of the extracellular reduction potential necessary for pigment production in filamentous fungi.


Assuntos
Membrana Celular/enzimologia , Fusarium/citologia , Fusarium/enzimologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pigmentos Biológicos/biossíntese , Sequência de Aminoácidos , Sequência Conservada , Espaço Extracelular/metabolismo , Fusarium/genética , Marcação de Genes , Genes Fúngicos/genética , Teste de Complementação Genética , Metionina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/classificação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Saccharomyces cerevisiae/enzimologia
11.
Environ Microbiol ; 12(3): 649-57, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20002135

RESUMO

African and Asian populations of Fusarium spp. (Gibberella fujikuroi species complex) associated with Bakanae of rice (Oryzae sativa L.) were isolated from seeds and characterized with respect to ecology, phylogenetics, pathogenicity and mycotoxin production. Independent of the origin, Fusarium spp. were detected in the different rice seed samples with infection rate ranges that varied from 0.25% to 9%. Four Fusaria (F. andiyazi, F. fujikuroi, F. proliferatum and F. verticillioides) were found associated with Bakanae of rice. While three of the Fusaria were found in both African and Asian seed samples, F. fujikuroi was only detected in seed samples from Asia. Phylogenetic studies showed a broad genetic variation among the strains that were distributed into four different genetic clades. Pathogenicity tests showed that all strains reduced seed germination and possessed varying ability to cause symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB(1) and FB(2)) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease.


Assuntos
Ecologia , Fusarium , Variação Genética , Gibberella , Micoses , Oryza/microbiologia , DNA Fúngico/genética , Fumonisinas/metabolismo , Fusarium/classificação , Fusarium/patogenicidade , Fusarium/fisiologia , Gibberella/classificação , Gibberella/patogenicidade , Gibberella/fisiologia , Giberelinas/genética , Giberelinas/metabolismo , Dados de Sequência Molecular , Filogenia , Sementes/genética , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...