Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IMA Fungus ; 15(1): 10, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582937

RESUMO

The Apiospora genus comprises filamentous fungi with promising potential, though its full capabilities remain undiscovered. In this study, we present the first genome assembly of an Apiospora arundinis isolate, demonstrating a highly complete and contiguous assembly estimated to 48.8 Mb, with an N99 of 3.0 Mb. Our analysis predicted a total of 15,725 genes, with functional annotations for 13,619 of them, revealing a fungus capable of producing very high amounts of carbohydrate-active enzymes (CAZymes) and secondary metabolites. Through transcriptomic analysis, we observed differential gene expression in response to varying growth media, with several genes related to carbohydrate metabolism showing significant upregulation when the fungus was cultivated on a hay-based medium. Finally, our metabolomic analysis unveiled a fungus capable of producing a diverse array of metabolites.

2.
J Phys Chem B ; 128(3): 635-647, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227769

RESUMO

Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to µM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.


Assuntos
Celulase , Celulases , Trichoderma , Hidrólise , Celulose/química , Celulases/química , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo
3.
Front Fungal Biol ; 4: 1264366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025899

RESUMO

As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.

4.
Basic Res Cardiol ; 118(1): 37, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688627

RESUMO

The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output and myocardial perfusion without affecting blood pressure in humans, but the cardiovascular sites of action remain obscure. Here, we test the hypothesis in rats that 3-OHB acts directly on the heart to increase cardiac contractility and directly on blood vessels to lower systemic vascular resistance. We investigate effects of 3-OHB on (a) in vivo hemodynamics using echocardiography and invasive blood pressure measurements, (b) isolated perfused hearts in Langendorff systems, and (c) isolated arteries and veins in isometric myographs. We compare Na-3-OHB to equimolar NaCl added to physiological buffers or injection solutions. At plasma concentrations of 2-4 mM in vivo, 3-OHB increases cardiac output (by 28.3±7.8%), stroke volume (by 22.4±6.0%), left ventricular ejection fraction (by 13.3±4.6%), and arterial dP/dtmax (by 31.9±11.2%) and lowers systemic vascular resistance (by 30.6±11.2%) without substantially affecting heart rate or blood pressure. Applied to isolated perfused hearts at 3-10 mM, 3-OHB increases left ventricular developed pressure by up to 26.3±7.4 mmHg and coronary perfusion by up to 20.2±9.5%. Beginning at 1-3 mM, 3-OHB relaxes isolated coronary (EC50=12.4 mM), cerebral, femoral, mesenteric, and renal arteries as well as brachial, femoral, and mesenteric veins by up to 60% of pre-contraction within the pathophysiological concentration range. Of the two enantiomers that constitute racemic 3-OHB, D-3-OHB dominates endogenously; but tested separately, the enantiomers induce similar vasorelaxation. We conclude that increased cardiac contractility and generalized systemic vasorelaxation can explain the elevated cardiac output during 3-OHB administration. These actions strengthen the therapeutic rationale for 3-OHB in heart failure management.


Assuntos
Vasodilatação , Função Ventricular Esquerda , Humanos , Animais , Ratos , Volume Sistólico , Ácido 3-Hidroxibutírico , Débito Cardíaco , Hidroxibutiratos , Corpos Cetônicos
5.
Brain Behav ; 13(6): e3007, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37073502

RESUMO

BACKGROUND: Type 2 diabetes and obesity may be inversely associated with amyotrophic lateral sclerosis (ALS), but the evidence is controversial. METHODS: Using Danish, nationwide registries (1980-2016), we identified patients with a diagnosis of type 2 diabetes (N = 295,653) and patients with a diagnosis of obesity (N = 312,108). Patients were matched (1:3) to persons from the general population on birth year and sex. We computed incidence rates and Cox regression derived hazard ratios (HRs) of a diagnosis of ALS. In multivariable analyses, HRs were controlled for sex, birth year, calendar year, and comorbidities. RESULTS: We observed 168 incident cases of ALS (0.7 [95% confidence interval (CI): 0.6-0.8] per 10,000 person-years) among patients with type 2 diabetes and 859 incident cases of ALS (0.9 [95% CI: 0.9-1.0] per 10,000 person-years) among matched comparators. The adjusted HR was 0.87 (95% CI: 0.72-1.04). The association was present among men (adjusted HR: 0.78 [95% CI: 0.62-0.99]) but not women (adjusted HR: 1.03 [95% CI: 0.78-1.37]), and among those aged ≥60 years (adjusted HR: 0.75 [95% CI: 0.59-0.96]) but not younger. We observed 111 ALS events (0.4 [95% CI: 0.4-0.5] per 10,000 person-years) among obesity patients and 431 ALS events (0.5 [95% CI: 0.5-0.6] per 10,000 person-years) among comparators. The adjusted HR was 0.88 (95% CI: 0.70-1.11). CONCLUSIONS: Diagnoses of type 2 diabetes and obesity were associated with a reduced rate of ALS compared with general population comparators, particularly among men and patients aged 60 years or above. However, absolute rate differences were small.


Assuntos
Esclerose Lateral Amiotrófica , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Estudos de Coortes , Obesidade/epidemiologia , Comorbidade , Incidência
6.
IMA Fungus ; 14(1): 3, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726175

RESUMO

The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.

7.
Eur J Epidemiol ; 38(2): 189-197, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622497

RESUMO

Out-of-home care has been linked to excess mortality across the lifespan. We examined whether this association is modified by the age at first out-of-home care placement and the number of placements. In this population-based cohort study, we used register data covering all children born in Denmark between 1 and 1980 and 31 December 1999, totalling 1,111,193 individuals followed until 31 December 2018. We divided participants according to sex, out-of-home care status, age at first placement, and the number of placements. We estimated adjusted hazard ratios and hazard differences per 10,000 person-years for all-cause mortality and mortality due to suicide, accidents, and cancer between ages 18 and 39. 53,015 (4.8%) of the participants were placed in out-of-home care before age 18. The adjusted hazard ratio for all-cause mortality was 3.4 (95% CI 3.1-3.7) for males and 4.7 (4.0-5.4) for females, corresponding to 20.6 (19.0-22.2) and 10.3 (9.1-11.5) additional deaths per 10,000 individuals annually among males and females, respectively. Associations did not vary substantially according to age at first placement or the number of placements. Both males and females with a history of out-of-home care were more likely to die from suicide, accidents, and cancer compared with their peers. We show a markedly higher all-cause and cause-specific mortality among children who have been placed in out-of-home care, but contrary to our hypothesis, age at first placement and the number of placements did not modify this relation. These results warrant further investigation into potential target points for interventions that may prevent premature mortality in this group of disadvantaged individuals.


Assuntos
Serviços de Assistência Domiciliar , Suicídio , Masculino , Criança , Feminino , Humanos , Adulto , Adolescente , Adulto Jovem , Estudos de Coortes , Modelos de Riscos Proporcionais , Mortalidade Prematura
8.
Genome Med ; 14(1): 47, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505393

RESUMO

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Filogenia , SARS-CoV-2/genética
9.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438621

RESUMO

During the last two decades, whole-genome sequencing has revolutionized genetic research in all kingdoms, including fungi. More than 1000 fungal genomes have been submitted to sequence databases, mostly obtained through second generation short-read DNA sequencing. As a result, highly fragmented genome drafts have typically been obtained. However, with the emergence of third generation long-read DNA sequencing, the assembly challenge can be overcome and highly contiguous assemblies obtained. Such attractive results, however, are extremely dependent on the ability to extract highly purified high molecular weight (HMW) DNA. Extraction of such DNA is currently a significant challenge for all species with cell walls, not least fungi. In this study, four isolates of filamentous ascomycetes (Apiospora pterospermum, Aspergillus sp. (subgen. Cremei), Aspergillus westerdijkiae, and Penicillium aurantiogriseum) were used to develop extraction and purification methods that result in HMW DNA suitable for third generation sequencing. We have tested and propose two straightforward extraction methods based on treatment with either a commercial kit or traditional phenol-chloroform extraction both in combination with a single commercial purification method that result in high quality HMW DNA from filamentous ascomycetes. Our results demonstrated that using these DNA extraction methods and coverage, above 75 x of our haploid filamentous ascomycete fungal genomes result in complete and contiguous assemblies.


Assuntos
Ascomicetos , Sequenciamento por Nanoporos , Ascomicetos/genética , DNA , Genoma Fúngico , Peso Molecular
10.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104337

RESUMO

The phylogenetic relationship of the Arthrinium genus has changed throughout the years. For many years, the Arthrinium genus included the Apiospora genus as well. New evidence has now showed that these two genera in fact are phylogenetically different and belong to two different clades. Here, we present the first genome draft within the Arthrinium genus. This genome was sequenced using the MinION platform from Oxford Nanopore Technologies and the assembly was contiguous. The assembly comprises ten contigs totaling 39.8 Mb with an N50 length of 7.9. In the assembly, 11,602 genes were predicted whereof 10,784 were functionally annotated. A total of 37 rRNA genes were observed in the assembly and repeat elements spanning 7.39% of the genome were found. A total of 99 secondary metabolite gene clusters were predicted, showing a high potential of novel secondary metabolites. This genome sequence will not only be useful for further investigation of the Arthrinium clade, but also for discovery of novel secondary metabolite compounds that could be of high interest for the food, agricultural, or pharmaceutical industry.


Assuntos
Genoma , Nanoporos , Filogenia
11.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012550

RESUMO

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Fusarium/enzimologia , Policetídeo Sintases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Xantonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Clonagem Molecular , Fusarium/genética , Isoquinolinas/metabolismo , Modelos Moleculares , Policetídeo Sintases/química , Policetídeo Sintases/genética , Domínios Proteicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
12.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299061

RESUMO

Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain's biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.


Assuntos
Antifúngicos/farmacologia , Carvão Mineral , Fungos/efeitos dos fármacos , Streptomyces/isolamento & purificação , Água/química , Minas de Carvão , Streptomyces/química
13.
J Nat Prod ; 84(8): 2070-2080, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34292732

RESUMO

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cß of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Proteínas Fúngicas/genética , Fusarium/genética , Estrutura Molecular , Família Multigênica , Peptídeo Sintases/genética , Triticum/microbiologia
14.
Nat Commun ; 12(1): 3847, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158485

RESUMO

Enzyme reactions, both in Nature and technical applications, commonly occur at the interface of immiscible phases. Nevertheless, stringent descriptions of interfacial enzyme catalysis remain sparse, and this is partly due to a shortage of coherent experimental data to guide and assess such work. In this work, we produced and kinetically characterized 83 cellulases, which revealed a conspicuous linear free energy relationship (LFER) between the substrate binding strength and the activation barrier. The scaling occurred despite the investigated enzymes being structurally and mechanistically diverse. We suggest that the scaling reflects basic physical restrictions of the hydrolytic process and that evolutionary selection has condensed cellulase phenotypes near the line. One consequence of the LFER is that the activity of a cellulase can be estimated from its substrate binding strength, irrespectively of structural and mechanistic details, and this appears promising for in silico selection and design within this industrially important group of enzymes.


Assuntos
Algoritmos , Celulases/metabolismo , Celulose/metabolismo , Simulação de Dinâmica Molecular , Biocatálise , Celulases/química , Hidrólise , Cinética , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
15.
J Biol Chem ; 296: 100504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675751

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Hypocreales/enzimologia , Oxirredução , Polissacarídeos/química , Sordariales/enzimologia
16.
Clin Epidemiol ; 12: 1347-1353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324108

RESUMO

BACKGROUND: Some neurogenerative diseases have been linked to a reduced risk of cancer, but the association between motor neuron disease and cancer risk is not well understood. We hypothesized that cancer risk would be lower among those with motor neuron disease and its most common subtype, amyotrophic lateral sclerosis. METHODS: We conducted a population-based cohort study of motor neuron disease and cancer risk using routinely collected data from population-based registries in Denmark. We examined cancer incidence among patients diagnosed with motor neuron disease between January 1980 and December 2013 followed through 2013. Using Danish national cancer rates for the study period, we computed standardized incidence ratios as a measure of relative risks. RESULTS: In the cohort of 5053 patients with a motor neuron disease, the overall standardized incidence ratio of any cancer was 1.17 (95% confidence interval [CI], 1.03-1.31); the corresponding standardized incidence ratio for amyotrophic lateral sclerosis was 1.24 (95% CI, 0.96-1.57). The standardized incidence ratios of any cancer in the cohort with motor neuron disease was 1.52 (95% CI, 1.22-1.87) for <1 year of follow-up; 0.87 (95% CI, 0.68-1.09) for years 1-5 of follow-up; and 1.22 (95% CI, 1.01-1.46) for >5 years of follow-up. Beyond one year of follow-up, patients in the motor neuron disease had elevated standardized incidence ratios for lymphoid leukemia, non-Hodgkin lymphoma, and basal cell skin cancer. CONCLUSION: Findings fail to support the hypothesis that motor neuron disease or amyotrophic lateral sclerosis is associated with reduced cancer incidence. An elevated risk of cancer during the first year of follow-up may be attributable to heightened surveillance.

17.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066643

RESUMO

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Assuntos
Clonagem Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Policetídeo Sintases/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Família Multigênica , Policetídeo Sintases/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
18.
Biotechnol Biofuels ; 13: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782472

RESUMO

BACKGROUND: Cellobiohydrolase from glycoside hydrolase family 7 is a major component of commercial enzymatic mixtures for lignocellulosic biomass degradation. For many years, Trichoderma reesei Cel7A (TrCel7A) has served as a model to understand structure-function relationships of processive cellobiohydrolases. The architecture of TrCel7A includes an N-glycosylated catalytic domain, which is connected to a carbohydrate-binding module through a flexible, O-glycosylated linker. Depending on the fungal expression host, glycosylation can vary not only in glycoforms, but also in site occupancy, leading to a complex pattern of glycans, which can affect the enzyme's stability and kinetics. RESULTS: Two expression hosts, Aspergillus oryzae and Trichoderma reesei, were utilized to successfully express wild-types TrCel7A (WT Ao and WT Tr ) and the triple N-glycosylation site deficient mutants TrCel7A N45Q, N270Q, N384Q (ΔN-glyc Ao and ΔN-glyc Tr ). Also, we expressed single N-glycosylation site deficient mutants TrCel7A (N45Q Ao , N270Q Ao , N384Q Ao ). The TrCel7A enzymes were studied by steady-state kinetics under both substrate- and enzyme-saturating conditions using different cellulosic substrates. The Michaelis constant (K M ) was consistently found to be lowered for the variants with reduced N-glycosylation content, and for the triple deficient mutants, it was less than half of the WTs' value on some substrates. The ability of the enzyme to combine productively with sites on the cellulose surface followed a similar pattern on all tested substrates. Thus, site density (number of sites per gram cellulose) was 30-60% higher for the single deficient variants compared to the WT, and about twofold larger for the triple deficient enzyme. Molecular dynamic simulation of the N-glycan mutants TrCel7A revealed higher number of contacts between CD and cellulose crystal upon removal of glycans at position N45 and N384. CONCLUSIONS: The kinetic changes of TrCel7A imposed by removal of N-linked glycans reflected modifications of substrate accessibility. The presence of N-glycans with extended structures increased K M and decreased attack site density of TrCel7A likely due to steric hindrance effect and distance between the enzyme and the cellulose surface, preventing the enzyme from achieving optimal conformation. This knowledge could be applied to modify enzyme glycosylation to engineer enzyme with higher activity on the insoluble substrates.

19.
Biotechnol Biofuels ; 13: 121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670408

RESUMO

BACKGROUND: Fungal beta-glucosidases (BGs) from glucoside hydrolase family 3 (GH3) are industrially important enzymes, which convert cellooligosaccharides into glucose; the end product of the cellulolytic process. They are highly active against the ß-1,4 glycosidic bond in soluble substrates but typically reported to be inactive against insoluble cellulose. RESULTS: We studied the activity of four fungal GH3 BGs on cellulose and found significant activity. At low temperatures (10 â„ƒ), we derived the approximate kinetic parameters k cat = 0.3 ± 0.1 s-1 and K M = 80 ± 30 g/l for a BG from Aspergillus fumigatus (AfBG) acting on Avicel. Interestingly, this maximal turnover is higher than reported values for typical cellobiohydrolases (CBH) at this temperature and comparable to those of endoglucanases (EG). The specificity constant of AfGB on Avicel was only moderately lowered compared to values for EGs and CBHs. CONCLUSIONS: Overall these observations suggest a significant promiscuous side activity of the investigated GH3 BGs on insoluble cellulose. This challenges the traditional definition of a BG and supports suggestions that functional classes of cellulolytic enzymes may represent a continuum of overlapping modes of action.

20.
Biochem J ; 477(10): 1971-1982, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32391552

RESUMO

The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.e. the opposite limit compared with the conventional Michaelis-Menten framework. This inverse condition is practical for insoluble substrates and elucidates how the inhibitor reduces enzyme activity through binding to the substrate. We claim that this type of inhibition is common for interfacial enzyme reactions because substrate accessibility is low, and we show that it can be analyzed by experiments and rate equations that are analogous to the conventional approach, except that the roles of enzyme and substrate have been swapped. To illustrate the approach, we investigated the major cellulases from Trichoderma reesei (Cel6A and Cel7A) acting on insoluble cellulose. As model inhibitors, we used catalytically inactive variants of Cel6A and Cel7A. We made so-called inverse Michaelis-Menten curves at different concentrations of inhibitors and found that a new rate equation accounted well for the data. In most cases, we found a mixed type of surface-site inhibition mechanism, and this probably reflected that the inhibitor both competed with the enzyme for the productive binding-sites (competitive inhibition) and hampered the processive movement on the surface (uncompetitive inhibition). These results give new insights into the complex interplay of Cel7A and Cel6A on cellulose and the approach may be applicable to other heterogeneous enzyme reactions.


Assuntos
Celulases/metabolismo , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Trichoderma/enzimologia , Sítios de Ligação , Celulose/metabolismo , Hidrólise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...