Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 243(11): 895-910, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30105952

RESUMO

Dronedarone improves microvascular flow during atrial fibrillation and reduces the infarct size in acute models of myocardial infarction. However, dronedarone might be harmful in patients with recent decompensated heart failure and increases mortality in patients with permanent atrial fibrillation. A pathophysiological explanation for these discrepant data is lacking. This study investigated the effects of dronedarone on gene and protein expression in the infarcted area and border zone in pigs subjected to anterior ischemia/reperfusion myocardial infarction. The ischemia/reperfusion myocardial infarction was induced in 16 pigs. Eight pigs were treated with dronedarone for 28 days after myocardial infarction, the remaining pigs served as control. Microarray-based transcriptome profiling and 2D-DIGE-based proteome analysis were used to assess the effects of dronedarone on left ventricular gene expression in healthy (LV), infarcted (MI), and border zone tissue. Selected targets were validated by RT-qPCR or immunoblot analyses, with special emphasize given to the transcriptome/proteome overlap. Combined "omics" analysis was performed to identify most significant disease and function charts affected by dronedarone and to establish an integrated network. The levels of 879 (BZ) or 7 (MI) transcripts and 51 (LV) or 15 (BZ) proteins were significantly altered by dronedarone, pointing to a substantial efficacy of dronedarone in the border zone. Transcriptome and proteome data indicate that dronedarone influences post-infarction remodeling processes and identify matricellular proteins as major targets of dronedarone in this setting. This finding is fully supported by the disease and function charts as well as by the integrated network established by combined "omics". Dronedarone therapy alters myocardial gene expression after acute myocardial infarction with pronounced effects in the border zone. Dronedarone promotes infarct healing via regulation of periostin and might contribute to the limitation of its expansion as well as cardiac rupture. Thus, there are no experimental hints that dronedarone per se has direct harmful effects after MI in ventricular tissue. Impact statement Dronedarone reduced the infarct size in models of acute myocardial infarction (MI). Here, we show that dronedarone attenuates many of the substantial changes in gene expression that are provoked by acute myocardial infarction (AMI) in pigs. Dronedarone modifies the expression of gene panels related to post-infarction cardiac healing and remodeling processes and, most remarkably, this occurs predominantly in the infarction border-zone and much less so in the vital or infarcted myocardium. Combined "omics" identified matricellular proteins and ECM as major dronedarone-regulated targets and emphasizes their relevance for Disease Charts and Tox Function Charts associated with tissue remodeling and cellular movement. The results demonstrate dronedarone's capability of regulating cardiac repair and remodeling processes specifically in the infarction border zone and identify underlying mechanisms and pathways that might be employed in future therapeutic strategies to improve long-term cardiac tissue function and stability.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Dronedarona/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Immunoblotting , Análise em Microsséries , Proteoma/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Resultado do Tratamento , Eletroforese em Gel Diferencial Bidimensional
2.
Herzschrittmacherther Elektrophysiol ; 29(1): 70-75, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29318371

RESUMO

Atrial fibrillation (AF) is the most common tachyarrhythmia. AF, due to substantial remodeling processes initiated in the atria, is a typically self-sustaining and progressive disease. Atrial remodeling has been intensively investigated at the molecular level in recent decades. Although the application of "omics" technologies has already significantly contributed to our current understanding of the pathophysiology of AF, the complexity of the latter and the large heterogeneity of AF patients remained a major limitation. With the advent of novel "omics" and by applying integrative approaches, it will be possible to extract more information and push boundaries. The present review will summarize the contribution of transcriptomics and proteomics to our understanding of the pathophysiology of AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Proteômica , Transcriptoma/fisiologia , Fibrilação Atrial/genética , Remodelamento Atrial/genética , Remodelamento Atrial/fisiologia , Átrios do Coração/fisiopatologia , Humanos , Fosforilação/fisiologia , Análise Serial de Proteínas , Análise de Sequência de RNA , Transcriptoma/genética , Eletroforese em Gel Diferencial Bidimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...