Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050116

RESUMO

Although nitrogen (N) fertilizer application plays an essential role in improving crop productivity, an inappropriate management can result in negative impacts on environment and human health. To break this dilemma, a 12-year field experiment (2008-2019) with five N application rates was conducted on the North China Plain (NCP) to evaluate the integrated impacts of optimizing N management (Opt. N, 160 kg N ha-1 on average) on agronomic, environmental, health, and economic performances of summer maize production. Over the 12-year study, the Opt. N treatment achieved the maximal average grain yield (10.6 Mg ha-1) and grain protein yield (793 kg ha-1) among five N treatments. The life cycle assessment methodology was applied to determine the negative impacts on environmental and human health, and both of them increased with the N rate. Compared with the farmers' conventional N rate (250 kg N ha-1), the Opt. N treatment reduced acidification, eutrophication, global warming, and energy depletion potentials by 29%, 42%, 35%, and 18%, respectively, and reduced the health impact by 32% per Mg of grain yield or grain protein yield produced. Both the Opt. N and Opt. N*50-70% treatments resulted in high private profitability (2038 USD ha-1), ecosystem economic benefit (1811 USD ha-1), and integrated compensation benefit (17,548 USD ha-1). This study demonstrates the potential benefits of long-term optimizing of N management to maintain high maize yields and grain quality, to reduce various environmental impacts and health impacts, and to enhance economic benefits. These benefits can be further enhanced when Opt. N was combined with advanced agronomic management practices. The results also suggest that reducing the optimal N rate from 160 to 145 kg N ha-1 is achievable to further reduce the negative impacts while maintaining high crop productivity. In conclusion, optimizing the N management is essential to promote sustainable summer maize production on the NCP.

2.
Trends Plant Sci ; 28(5): 552-566, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36628656

RESUMO

Salinity is a key factor limiting agricultural production worldwide. Recent advances in field phenotyping have enabled the recording of the environmental history and dynamic response of plants by considering both genotype × environment (G×E) interactions and envirotyping. However, only a few studies have focused on plant salt tolerance phenotyping. Therefore, we analyzed the potential opportunities and major challenges in improving plant salt tolerance using advanced field phenotyping technologies. RGB imaging and spectral and thermal sensors are the most useful and important sensing techniques for assessing key morphological and physiological traits of plant salt tolerance. However, field phenotyping faces challenges owing to its practical applications and high costs, limiting its use in early generation breeding and in developing countries.


Assuntos
Tolerância ao Sal , Agricultura , Fenótipo , Melhoramento Vegetal , Plantas/genética , Tolerância ao Sal/genética
3.
Front Plant Sci ; 13: 1029612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212280

RESUMO

High temporal and spatial resolution is required to meet the challenges of changing plant characteristics over time. Solar radiation and reflectance of vegetation canopies vary with the time of day and growing season. Little is known regarding the interactions between daily and seasonally varying irradiation and reflectance of row-planted crops that can be grown in any compass direction. The spectral reflectance of maize grown in four compass directions was recorded across the entire life cycle through highly frequent drone-based multispectral sensing to determine biomass changes over time and make early yield predictions. Comparison of information from spectral bands and indices indicated no differences among the four compass directions at the reproductive stage and only a few differences at the earlier vegetative growth stages. There was no systematic influence of row orientation on the relationships between spectral data, biomass, and grain yield, except at the early growth stages. Spectral relationships to biomass at the reproductive stage varied in row directions with R2-values close to 0.9, already observed at early growth stages for the indices NDVI, SR, GCI, and GNDVI. The spectral relationships to yield were closer in individual compass directions, with R2-values varying between 0.8-0.9 for the best indices GCI and GNDV after BBCH 61. A closer inspection of daytime changes indicated a diurnal trend with 15 and 20% decreased spectral values observed after midday at the growth stages BBCH 81 and 61, respectively, thus requiring standardization of flight timing during the day. Drone-assisted nadir-oriented spectral sensing could be a reference for terrestrial and satellite-based reflectance sensing to relate canopy reflectance to crop characteristics quantitatively.

4.
Plants (Basel) ; 11(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161437

RESUMO

Although plant chlorophyll (Chl) is one of the important elements in monitoring plant stress and reflects the photosynthetic capacity of plants, their measurement in the lab is generally time- and cost-inefficient and based on a small part of the leaf. This study examines the ability of canopy spectral reflectance data for the accurate estimation of the Chl content of two wheat genotypes grown under three salinity levels. The Chl content was quantified as content per area (Chl area, µg cm-2), concentration per plant (Chl plant, mg plant-1), and SPAD value (Chl SPAD). The performance of spectral reflectance indices (SRIs) with different algorithm forms, partial least square regression (PLSR), and stepwise multiple linear regression (SMLR) in estimating the three units of Chl content was compared. Results show that most indices within each SRI form performed better with Chl area and Chl plant and performed poorly with Chl SPAD. The PLSR models, based on the four forms of SRIs individually or combined, still performed poorly in estimating Chl SPAD, while they exhibited a strong relationship with Chl plant followed by Chl area in both the calibration (Cal.) and validation (Val.) datasets. The SMLR models extracted three to four indices from each SRI form as the most effective indices and explained 73-79%, 80-84%, and 39-43% of the total variability in Chl area, Chl plant, and Chl SPAD, respectively. The performance of the various predictive models of SMLR for predicting Chl content depended on salinity level, genotype, season, and the units of Chl content. In summary, this study indicates that the Chl content measured in the lab and expressed on content (µg cm-2) or concentration (mg plant-1) can be accurately estimated at canopy level using spectral reflectance data.

5.
Front Plant Sci ; 13: 1043458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589131

RESUMO

Climate change is expected to influence crop growth through frequent drought and heat extremes, and thus, drought and heat tolerance are of increasing importance as major breeding goals for cereal crops in Central Europe. Plant physiological water status traits are suitable for phenotyping plant drought/heat tolerance. The objective of this study was to determine whether relative leaf water content (RLWC), plant canopy temperature (CT), and carbon isotope discrimination (CID) are suitable for phenotyping the drought/heat resistance of German winter wheat for future climate resilience. Therefore, a comprehensive field evaluation was conducted under drier and warmer conditions in Moldova using a space-for-time approach for twenty winter wheat varieties from Germany and compared to twenty regionally adapted varieties from Eastern Europe. Among the physiological traits RLWC, CT, and CID, the heritability of RLWC showed the lowest values regardless of year or variety origin, and there was no significant correlation between RLWC and grain yield regardless of the year, suggesting that RLWC did not seem to be a useful trait for distinguishing origins or varieties under continental field conditions. Although the heritability of CT demonstrated high values, the results showed surprisingly low and nonsignificant correlations between CT and grain yield; this may have been due to a confounding effect of increased soil temperature in the investigated dark Chernozem soil. In contrast, the heritability of CID in leaves and grain was high, and there were significant correlations between grain yield and CID, suggesting that CID is a reliable indirect physiological trait for phenotyping drought/heat resistance for future climate resilience in German wheat.

6.
Front Plant Sci ; 12: 722871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497628

RESUMO

To meet the strict requirements for the malting quality of both grain size and protein content for malting barley, a better understanding of the partitioning and remobilization of dry matter (DM) and nitrogen (N) from individual vegetative organs during grain filling may contribute to adjusting a balance in both quality parameters to satisfy the malting criteria of the brewing industry. A 2-year experiment that included 23 spring malting barley varieties was carried out to determine the DM and N partitioning in different organs at anthesis and maturity and to estimate their remobilization to grains. In contrast to the genetic variation of the 23 barley varieties, year effect was the most important single factor influencing the DM and N accumulation at pre-anthesis, and the DM and N translocation from their reserves at pre-anthesis. Post-anthesis assimilates accounted for 71-94% of the total grain yield among the barley varieties in 2014 and 53-81% in 2015. In contrast, the N reserved in vegetative tissues at anthesis contributed to barley grain N from 67% in the variety Union to 91% in the variety Marthe in 2014, and 71% in the variety Grace to 97% in the variety Shakira in 2015. The results concluded that photosynthetically derived assimilates at post-anthesis played an important role in determining grain size, whereas N reserves at pre-anthesis and N remobilization at post-anthesis probably determined the grain protein content of the malting barley. To achieve a high quality of malting barley grains in both grain size and protein content simultaneously, balancing photosynthetic assimilates at post-anthesis and N reserves at pre-anthesis and N remobilization should be considered as strategies for the combination of the selection of spring malting barley varieties together with agronomic N management.

8.
Sensors (Basel) ; 21(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670612

RESUMO

Near-infrared reflectance spectroscopy (NIRS) was successfully used in this study to measure soil properties, mainly C and N, requiring spectral pre-treatments. Calculations in this evaluation were carried out using multivariate statistical procedures with preceding pre-treatment procedures of the spectral data. Such transformations could remove noise, highlight features, and extract essential wavelengths for quantitative predictions. This frequently significantly improved the predictions. Since selecting the appropriate transformation was not straightforward due to the large numbers of available methods, more comprehensive insight into choosing appropriate and optimized pre-treatments was required. Therefore, the objectives of this study were (i) to compare various pre-processing transformations of spectral data to determine their suitability for modeling soil C and N using NIR spectra (55 pre-treatment procedures were tested), and (ii) to determine which wavelengths were most important for the prediction of C and N. The investigations were carried out on an arable field in South Germany with a soil type of Calcaric Fluvic Relictigleyic Phaeozem (Epigeoabruptic and Pantoclayic), created in the flooding area of the Isar River. The best fit and highest model accuracy for the C (Ct, Corg, and Ccarb) and N models in the calibration and validation modes were achieved using derivations with Savitzky-Golay (SG). This enabled us to calculate the Ct, Corg, and N with an R2 higher than 0.98/0.86 and an ratio of performance to the interquartile range (RPIQ) higher than 10.9/4.1 (calibration/validation).

9.
Front Plant Sci ; 10: 1537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850029

RESUMO

The incorporation of nondestructive and cost-effective tools in genetic drought studies in combination with reliable indirect screening criteria that exhibit high heritability and genetic correlations will be critical for addressing the water deficit challenges of the agricultural sector under arid conditions and ensuring the success of genotype development. In this study, the proximal spectral reflectance data were exploited to assess three destructive agronomic parameters [dry weight (DW) and water content (WC) of the aboveground biomass and grain yield (GY)] in 30 recombinant F7 and F8 inbred lines (RILs) growing under full (FL) and limited (LM) irrigation regimes. The utility of different groups of spectral reflectance indices (SRIs) as an indirect assessment tool was tested based on heritability and genetic correlations. The performance of the SRIs and different models of partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) in estimating the destructive parameters was considered. Generally, all groups of SRIs, as well as different models of PLSR and SMLR, generated better estimations for destructive parameters under LM and combined FL+LM than under FL. Even though most of the SRIs exhibited a low association with destructive parameters under FL, they exhibited moderate to high genetic correlations and also had high heritability. The SRIs based on near-infrared (NIR)/visible (VIS) and NIR/NIR, especially those developed in this study, spectral band intervals extracted within VIS, red edge, and NIR spectral range, or individual effective wavelengths relevant to green, red, red edge, and middle NIR spectral region, were found to be more effective in estimating the destructive parameters under all conditions. Five models of SMLR and PLSR for each condition explained most of the variation in the three destructive parameters among genotypes. These models explained 42% to 46%, 19% to 30%, and 39% to 46% of the variation in DW, WC, and GY among genotypes under FL, 69% to 72%, 59% to 61%, and 77% to 81% under LM, and 71% to 75%, 61% to 71%, and 74% to 78% under FL+LM, respectively. Overall, these results confirmed that application of hyperspectral reflectance sensing in breeding programs is not only important for evaluating a sufficient number of genotypes in an expeditious and cost-effective manner but also could be exploited to develop indirect breeding traits that aid in accelerating the development of genotypes for application under adverse environmental conditions.

11.
Sci Rep ; 9(1): 16473, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712701

RESUMO

The timely estimation of growth and photosynthetic-related traits in an easy and nondestructive manner using hyperspectral data will become imperative for addressing the challenges of environmental stresses inherent to the agricultural sector in arid conditions. However, the handling and analysis of these data by exploiting the full spectrum remains the determining factor for refining the estimation of crop variables. The main objective of this study was to estimate growth and traits underpinning photosynthetic efficiency of two wheat cultivars grown under simulated saline field conditions and exposed to three salinity levels using hyperspectral reflectance information from 350-2500 nm obtained at two years. Partial least squares regression (PLSR) based on the full spectrum was applied to develop predictive models for estimating the measured parameters in different conditions (salinity levels, cultivars, and years). Variable importance in projection (VIP) of PLSR in combination with multiple linear regression (MLR) was implemented to identify important waveband regions and influential wavelengths related to the measured parameters. The results showed that the PLSR models exhibited moderate to high coefficients of determination (R2) in both the calibration and validation datasets (0.30-0.95), but that this range of R2 values depended on parameters and conditions. The PLSR models based on the full spectrum accurately and robustly predicted three of four parameters across all conditions. Based on the combination of PLSR-VIP and MLR analysis, the wavelengths selected within the visible (VIS), red-edge, and middle near-infrared (NIR) wavebands were the most sensitive to all parameters in all conditions, whereas those selected within the shortwave infrared (SWIR) waveband were effective for some parameters in particular conditions. Overall, these results indicated that the PLSR analysis and band selection techniques can offer a rapid and nondestructive alternative approach to accurately estimate growth- and photosynthetic-related trait responses to salinity stress.


Assuntos
Simulação por Computador , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Triticum/crescimento & desenvolvimento , Análise Multivariada , Tolerância ao Sal
12.
Front Plant Sci ; 10: 1295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736988

RESUMO

Enhancing crop nitrogen use efficiency (NUE) is a key requirement for both economic and ecological reasons. Consequently, the genotypic potential for NUE in winter wheat (Triticum aestivum L.) requires further exploitation. Emerging plant phenomic techniques may provide knowledge about traits contributing to grain N uptake (GNup) and grain yield (GY). However, the understanding of beneficial strategies concerning the temporal dynamics of NUE and GY formation and the role of plant organs is still scarce especially under high-yielding European conditions-particularly to discriminate interesting lines in the breeding process. Thus, screening for potentially useful NUE traits in terms of variation, stability, and contribution to target traits will be an essential prerequisite for the development of efficient phenotyping strategies. Therefore, 46 NUE and yield formation traits were assessed in a population of 75 breeding lines over 3 years from 2015 to 2017 in southern Germany, including dry matter (DM), N concentration, and N uptake at anthesis and maturity, both at the aboveground-plant and plant organ levels. Significant genotype and genotypexenvironment effects were observed for all traits. While GY was more related to post-anthesis assimilation, also DM translocation contributed substantially to GY by 31-44%. At maturity, total aboveground DM as opposed to harvest index predominantly determined GY. NUE for GY was better described by N uptake efficiency than by N utilization efficiency. GNup was greatly influenced by variation in GY, but not in grain N concentration, and by total N uptake and not the N harvest index. Post-anthesis N uptake highly depended on the year and was low in comparison to N translocation. However, post-anthesis N uptake was always correlated with GNup, suggesting the need to also consider stay-green strategies under temperate growing conditions. While anthesis traits were only moderately descriptive, GY will be enhanced by increasing total biomass and the N uptake efficiency. Similarly, targeting total N uptake, particularly at post-anthesis, seems to be a rewarding strategy to boost GNup. Thus, high-throughput phenotyping should be targeted rather toward detecting traits related to DM and N acquisition than to the internal allocation and rather to post-anthesis than to anthesis traits.

13.
Sensors (Basel) ; 19(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731416

RESUMO

Grain nitrogen (N) uptake (GNup) in winter wheat (Triticum aestivum L.) is influenced by multiple components at the plant organ level and by pre- and post-flowering N uptake (Nup). Although spectral proximal high-throughput sensing is promising for field phenotyping, it was rarely evaluated for such N traits. Hence, 48 spectral vegetation indices (SVIs) were evaluated on 10 measurement days for the estimation of 34 N traits in four data subsets, representing the variation generated by six high-yielding cultivars, two N fertilization levels (N), two sowing dates (SD), and two fungicide (F) intensities. Close linear relationships (p < 0.001) were found for GNup both in response to cultivar differences (Cv; R2 = 0.52) and other agronomic treatments (R2 = 0.67 for Cv*F*N, R2 = 0.53 for Cv*SD*N and R2 = 0.57 for the combined treatments), notably during milk ripeness. Especially near-infrared (NIR)/red edge SVIs, such as the NDRE_770_750, outperformed NIR/visible light (VIS) indices. Index rankings and seasonal R2 values were similar for total Nup, while the N harvest index, which expresses the partitioning to the grain, was moderately estimated only during dough ripeness, primarily from indices detecting contrasting senescence between different fungicide intensities. Senescence-sensitive indices, including R787_R765 and TRCARI_OSAVI, performed best for N translocation efficiency and some organ-level N traits at maturity. Even though grain N concentration was best assessed by the red edge inflection point (REIP), the blue/green index (BGI) was more suited for leaf-level N traits at anthesis. When SVIs were quantitatively ranked by data subsets, a better agreement was found for GNup, total Nup, and grain N concentration than for several contributing N traits. The results suggest (i) a good general potential for estimating GNup and total Nup by (ii) red edge indices best used (iii) during milk and early dough ripeness. The estimation of contributing N traits differs according to the agronomic treatment.


Assuntos
Fungicidas Industriais/farmacologia , Nitrogênio/metabolismo , Sementes/crescimento & desenvolvimento , Análise Espectral/métodos , Triticum/fisiologia , Produtos Agrícolas/fisiologia , Fertilizantes , Alemanha , Luz , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Característica Quantitativa Herdável , Sementes/metabolismo , Triticum/efeitos dos fármacos , Triticum/microbiologia
14.
Sensors (Basel) ; 19(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623394

RESUMO

Characterization of spatial soil variability is key for a better understanding of soils. To arrive at such information geophysical techniques have been used in the last two decades. Due to its easy handling, the geophysical sensor EM38 has widely been used to characterize agricultural areas. The theoretical background and usage of the EM38 is described, and based on multifaceted applications, the interpretation of the results as well as optimized steps for using it are outlined. Common principles and models of the apparent electrical conductivity (ECa) and strengths and limitations of this technique (calibration and temperature effects) are described as well as additional applications, such as the magnetic susceptibility, a comparison of measurements in vertical and horizontal modes, the use of weighted depth information and the influence of measurement conditions are addressed. Further a comparison of EM38 with other proximal soil sensors and fusion with other devices is described. The study reveals that EM38 is useful because the readings can reflect many different soil parameters.

15.
Plant Physiol Biochem ; 144: 300-311, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605962

RESUMO

To overcome the salinity threats to crop production in arid conditions, wheat cultivars should be developed with better performance with regard to key physiological traits. Although different chlorophyll fluorescence (ChlF) parameters, such as maximum quantum PSII photochemical efficiency (Fv/Fm), quantum yield of PSII (ΦPSII), and non-photochemical quenching (NPQ) have been proven to be key physiological traits to improve salt tolerance, their evaluation is time-consuming. In this study, hyperspectral canopy reflectance was used to assess ChlF parameters and grain yield (GY) of two wheat cultivars growing in simulated saline field conditions and exposed to three salinity levels (control, 6.0 dS m-1, and 12.0 dS m-1). Different spectral reflectance indices (SRIs) were formulated as ratios based on contour maps and tested for their relationship with ChlF parameters. The performance of individual SRIs and partial least squares regression (PLSR) models based on ChlF parameters, all examined SRIs, or data fusion of combined ChlF and SRIs to estimate the GY was considered. All examined SRIs failed to assess ΦPSII and NPQ under control condition, but most of them showed a moderate to strong relationship with both parameters under the salinity levels of 6.0 and 12.0 dS m-1. The examined SRIs showed a moderate and strong relationship with Fv/Fm under conditions of 6.0 and 12.0 dS m-1, respectively. Most SRIs correlated better with the three ChlF parameters for the salt-sensitive cultivar Sakha 61 than for the salt-tolerant cultivar Sakha 93. Several SRIs exhibited strong relationships with GY under the salinity levels of 6.0 and 12.0 dS m-1 and for both cultivars. Overall, the PLSR models exhibited additional improvements for estimating and predicting GY in both calibration and validation datasets over that using individual SRIs. The PLSR model based on data fusion was the best model to accurately estimate GY in the validation model even under control conditions. This study, of a type rarely conducted in simulated saline field conditions, indicates that the ChlF parameters could be linked to hyperspectral reflectance data for the rapid and non-destructive assessment of photosynthetic status and prediction of wheat production under salt stress field conditions.


Assuntos
Clorofila/metabolismo , Triticum/metabolismo , Análise dos Mínimos Quadrados , Salinidade , Tolerância ao Sal
16.
Sensors (Basel) ; 19(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461857

RESUMO

Precise sensor-based non-destructive estimation of crop nitrogen (N) status is essential for low-cost, objective optimization of N fertilization, as well as for early estimation of yield potential and N use efficiency. Several studies assessed the performance of spectral vegetation indices (SVI) for winter wheat (Triticum aestivum L.), often either for conditions of low N status or across a wide range of the target traits N uptake (Nup), N concentration (NC), dry matter biomass (DM), and N nutrition index (NNI). This study aimed at a critical assessment of the estimation ability depending on the level of the target traits. It included seven years' data with nine measurement dates from early stem elongation until flowering in eight N regimes (0-420 kg N ha-1) for selected SVIs. Tested across years, a pronounced date-specific clustering was found particularly for DM and NC. While for DM, only the R900_970 gave moderate but saturated relationships (R2 = 0.47, p < 0.001) and no index was useful for NC across dates, NNI and Nup could be better estimated (REIP: R2 = 0.59, p < 0.001 for both traits). Tested within growth stages across N levels, the order of the estimation of the traits was mostly Nup ≈ NNI > NC ≈ DM. Depending on the number (n = 1-3) and characteristic of cultivars included, the relationships improved when testing within instead of across cultivars, with the relatively lowest cultivar effect on the estimation of DM and the strongest on NC. For assessing the trait estimation under conditions of high-excessive N fertilization, the range of the target traits was divided into two intervals with NNI values < 0.8 (interval 1: low N status) and with NNI values > 0.8 (interval 2: high N status). Although better estimations were found in interval 1, useful relationships were also obtained in interval 2 from the best indices (DM: R780_740: average R2 = 0.35, RMSE = 567 kg ha-1; NC: REIP: average R2 = 0.40, RMSE = 0.25%; NNI: REIP: average R2 = 0.46, RMSE = 0.10; Nup: REIP: average R2 = 0.48, RMSE = 21 kg N ha-1). While in interval 1, all indices performed rather similarly, the three red edge-based indices were clearly better suited for the three N-related traits. The results are promising for applying SVIs also under conditions of high N status, aiming at detecting and avoiding excessive N use. While in canopies of lower N status, the use of simple NIR/VIS indices may be sufficient without losing much precision, the red edge information appears crucial for conditions of higher N status. These findings can be transferred to the configuration and use of simpler multispectral sensors under conditions of contrasting N status in precision farming.


Assuntos
Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Biomassa , Fertilização , Folhas de Planta/metabolismo , Estações do Ano , Triticum/metabolismo
17.
Plant Physiol ; 180(2): 1066-1080, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886115

RESUMO

Improving the water use efficiency (WUE) of crop plants without trade-offs in growth and yield is considered a utopic goal. However, recent studies on model plants show that partial restriction of transpiration can occur without a reduction in CO2 uptake and photosynthesis. In this study, we analyzed the potentials and constraints of improving WUE in Arabidopsis (Arabidopsis thaliana) and in wheat (Triticum aestivum). We show that the analyzed Arabidopsis wild-type plants consume more water than is required for unrestricted growth. WUE was enhanced without a growth penalty by modulating abscisic acid (ABA) responses either by using overexpression of specific ABA receptors or deficiency of ABA coreceptors. Hence, the plants showed higher water productivity compared with the wild-type plants; that is, equal growth with less water. The high WUE trait was resilient to changes in light intensity and water availability, but it was sensitive to the ambient temperature. ABA application to plants generated a partial phenocopy of the water-productivity trait. ABA application, however, was never as effective as genetic modification in enhancing water productivity, probably because ABA indiscriminately targets all ABA receptors. ABA agonists selective for individual ABA receptors might offer an approach to phenocopy the water-productivity trait of the high WUE lines. ABA application to wheat grown under near-field conditions improved WUE without detectable growth trade-offs. Wheat yields are heavily impacted by water deficit, and our identification of this crop as a promising target for WUE improvement may help contribute to greater food security.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Triticum/fisiologia , Água/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ecótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Plantas Geneticamente Modificadas , Temperatura , Triticum/efeitos dos fármacos
18.
PLoS One ; 14(3): e0212294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840631

RESUMO

Manipulating plant densities under different irrigation rates can have a significant impact on grain yield and water use efficiency by exerting positive or negative effects on ET. Whereas traditional spectral reflectance indices (SRIs) have been used to assess biophysical parameters and yield, the potential of multivariate models has little been investigated to estimate these parameters under multiple agronomic practices. Therefore, both simple indices and multivariate models (partial least square regression (PLSR) and support vector machines (SVR)) obtained from hyperspectral reflectance data were compared for their applicability for assessing the biophysical parameters in a field experiment involving different combinations of three irrigation rates (1.00, 0.75, and 0.50 ET) and five plant densities (D1: 150, D2: 250, D3: 350, D4: 450, and D5: 550 seeds m-2) in order to improve productivity and water use efficiency of wheat. Results show that the highest values for green leaf area, aboveground biomass, and grain yield were obtained from the combination of D3 or D4 with 1.00 ET, while the combination of 0.75 ET and D3 was the best treatment for achieving the highest values for water use efficiency. Wheat yield response factor (ky) was acceptable when the 0.75 ET was combined with D2, D3, or D4 or when the 0.50 ET was combined with D2 or D3, as the ky values of these combinations were less than or around one. The production function indicated that about 75% grain yield variation could be attributed to the variation in seasonal ET. Results also show that the performance of the SRIs fluctuated when regressions were analyzed for each irrigation rate or plant density specifically, or when the data of all irrigation rates or plant densities were combined. Most of the SRIs failed to assess biophysical parameters under specific irrigation rates and some specific plant densities, but performance improved substantially for combined data of irrigation rates and some specific plant densities. PLSR and SVR produced more accurate estimations of biophysical parameters than SRIs under specific irrigation rates and plant densities. In conclusion, hyperspectral data are useful for predicting and monitoring yield and water productivity of spring wheat across multiple agronomic practices.

19.
Front Plant Sci ; 10: 1672, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010159

RESUMO

High-throughput, non-invasive phenotyping is promising for evaluating crop nitrogen (N) use efficiency (NUE) and grain yield (GY) formation under field conditions, but its application for genotypes differing in morphology and phenology is still rarely addressed. This study therefore evaluates the spectral estimation of various dry matter (DM) and N traits, related to GY and grain N uptake (Nup) in high-yielding winter wheat breeding lines. From 2015 to 2017, hyperspectral canopy measurements were acquired on 26 measurement dates during vegetative and reproductive growth, and 48 vegetation indices from the visible (VIS), red edge (RE) and near-infrared (NIR) spectrum were tested in linear regression for assessing the influence of measurement stage and index selection. For most traits including GY and grain Nup, measurements at milk ripeness were the most reliable. Coefficients of determination (R²) were generally higher for traits related to maturity than for those related to anthesis canopy status. For GY (R² = 0.26-0.51 in the three years, p < 0.001), and most DM traits, indices related to the water absorption band at 970 nm provided better relationships than the NIR/VIS indices, including the normalized difference vegetation index (NDVI), and the VIS indices. In addition, most indices including RE bands, notably NIR/RE combinations, ranked above the NIR/VIS group. Due to index saturation, the index differentiation was most apparent in the highest-yielding year. For grain Nup and total Nup, the RE/VIS index MSR_705_445 and the simple ratio R780_R740 ranked highest, followed by other RE indices. Among the vegetative organs, R² values were mostly highest and lowest for leaf and spike traits, respectively. For each trait, index and partial least squares regression (PLSR) models were validated across years at milk ripeness, confirming the suitability of optimized index selection. PLSR improved the prediction errors of some traits but not consistently the R² values. The results suggest the use of sensor-based phenotyping as a useful support tool for screening of yield potential and NUE and for identifying contributing plant traits-which, due to their expensive and cumbersome destructive determination are otherwise not readily available. Water band and RE indices should be preferred over NIR/VIS indices for DM traits and N-related traits, respectively, and milk ripeness is suggested as the most reliable stage.

20.
Front Plant Sci ; 9: 1478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364047

RESUMO

Proximal remote sensing systems depending on spectral reflectance measurements and image analysis can acquire timely information to make real-time management decisions compared to laborious destructive measurements. There is a need to make nitrogen management decisions at early development stages of cereals when the first top-dressing is made. However, there is insufficient information available about the possibility of detecting differences in the biomass or the nitrogen status of cereals at early development stages and even less comparing its relationship to destructively obtained information. The performance of hyperspectral passive reflectance sensing and digital image analysis was tested in a 2-year study to assess the nitrogen uptake and nitrogen concentration, as well as the biomass fresh and dry weight at early and late tillering stages of wheat from BBCH 19 to 30. Wheat plants were subjected to different levels of nitrogen fertilizer applications and differences in biomass, and the nitrogen status was further created by varying the seeding rate. To analyze the spectral and digital imaging data simple linear regression and partial least squares regression (PLSR) models were used. The green pixel digital analysis, spectral reflectance indices and PLSR of spectral reflectance from 400 to 1000 nm were strongly related to the nitrogen uptake and the biomass fresh and dry weights at individual measurements and for the combined dataset at the early crop development stages. Relationships between green pixels, spectral reflectance indices and PLSR with the biomass and nitrogen status parameters reached coefficients of determination up to 0.95∗∗ through the individual measurements and the combined data set. Reflectance-based spectral sensing compared to digital image analysis allows detecting differences in the biomass and nitrogen status already at early growth stages in the tillering phase. Spectral reflectance indices are probably more robust and can more easily be applied compared to PLSR models. This might pave the way for more informed management decisions and potentially lead to improved nitrogen fertilizer management at early development stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...