Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453674

RESUMO

The use of IoT (Internet of Things) technology for the management of pet dogs left alone at home is increasing. This includes tasks such as automatic feeding, operation of play equipment, and location detection. Classification of the vocalizations of pet dogs using information from a sound sensor is an important method to analyze the behavior or emotions of dogs that are left alone. These sounds should be acquired by attaching the IoT sound sensor to the dog, and then classifying the sound events (e.g., barking, growling, howling, and whining). However, sound sensors tend to transmit large amounts of data and consume considerable amounts of power, which presents issues in the case of resource-constrained IoT sensor devices. In this paper, we propose a way to classify pet dog sound events and improve resource efficiency without significant degradation of accuracy. To achieve this, we only acquire the intensity data of sounds by using a relatively resource-efficient noise sensor. This presents issues as well, since it is difficult to achieve sufficient classification accuracy using only intensity data due to the loss of information from the sound events. To address this problem and avoid significant degradation of classification accuracy, we apply long short-term memory-fully convolutional network (LSTM-FCN), which is a deep learning method, to analyze time-series data, and exploit bicubic interpolation. Based on experimental results, the proposed method based on noise sensors (i.e., Shapelet and LSTM-FCN for time-series) was found to improve energy efficiency by 10 times without significant degradation of accuracy compared to typical methods based on sound sensors (i.e., mel-frequency cepstrum coefficient (MFCC), spectrogram, and mel-spectrum for feature extraction, and support vector machine (SVM) and k-nearest neighbor (K-NN) for classification).


Assuntos
Redes Neurais de Computação , Vocalização Animal/classificação , Algoritmos , Animais , Comportamento Animal/classificação , Cães
2.
Sensors (Basel) ; 18(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843479

RESUMO

Segmenting touching-pigs in real-time is an important issue for surveillance cameras intended for the 24-h tracking of individual pigs. However, methods to do so have not yet been reported. We particularly focus on the segmentation of touching-pigs in a crowded pig room with low-contrast images obtained using a Kinect depth sensor. We reduce the execution time by combining object detection techniques based on a convolutional neural network (CNN) with image processing techniques instead of applying time-consuming operations, such as optimization-based segmentation. We first apply the fastest CNN-based object detection technique (i.e., You Only Look Once, YOLO) to solve the separation problem for touching-pigs. If the quality of the YOLO output is not satisfied, then we try to find the possible boundary line between the touching-pigs by analyzing the shape. Our experimental results show that this method is effective to separate touching-pigs in terms of both accuracy (i.e., 91.96%) and execution time (i.e., real-time execution), even with low-contrast images obtained using a Kinect depth sensor.


Assuntos
Suínos/fisiologia , Tato/fisiologia , Animais , Humanos , Processamento de Imagem Assistida por Computador , Monitorização Fisiológica/métodos , Redes Neurais de Computação
3.
Sensors (Basel) ; 17(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186060

RESUMO

In a surveillance camera environment, the detection of standing-pigs in real-time is an important issue towards the final goal of 24-h tracking of individual pigs. In this study, we focus on depth-based detection of standing-pigs with "moving noises", which appear every night in a commercial pig farm, but have not been reported yet. We first apply a spatiotemporal interpolation technique to remove the moving noises occurring in the depth images. Then, we detect the standing-pigs by utilizing the undefined depth values around them. Our experimental results show that this method is effective for detecting standing-pigs at night, in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (i.e., 94.47%), even with severe moving noises occluding up to half of an input depth image. Furthermore, without any time-consuming technique, the proposed method can be executed in real-time.


Assuntos
Postura , Animais , Ruído , Suínos
4.
Sensors (Basel) ; 17(2)2017 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-28146057

RESUMO

Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...