Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(19): 9545-9557, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38660774

RESUMO

An active and selective two-electron oxygen reduction reaction (2e- ORR) is required for efficient electrosynthesis of H2O2. This reaction can be promoted by metal phthalocyanines (MPcs), which serve as model catalysts with well-defined structures. MPc molecules have mostly been evaluated on conductive carbon-based substrates, including glassy carbon (GC) and carbon nanotubes (CNTs), yet their influence on the electrocatalytic properties is not well understood. This study demonstrated that the ORR activity per surface area was improved by up to 4-fold with MPc molecules supported on CNTs (MPc/CNTs, M = Co, Mn, and Fe) compared to MPc loaded directly on GC. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the CNTs modified the electronic structure of the MPc molecules to optimize the *OOH binding energy and boost the heterogeneous electron transfer rates. Detailed kinetic analysis enabled multiple reaction pathways to be decoupled to extract the metal-dependent intrinsic 2e-/4e- ORR activities. Finally, MPc/CNT catalysts were employed in an H2O2 electrosynthesis flow cell, which delivered an industrial-scale current density of -200 mA cm-2 and an H2O2 faradaic efficiency of 88.7 ± 0.6% with the CoPc/CNT catalyst in a neutral electrolyte.

2.
ACS Appl Mater Interfaces ; 15(26): 31393-31402, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339373

RESUMO

Active and nonprecious-metal bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital components of clean energy conversion devices such as regenerative fuel cells and rechargeable metal-air batteries. Porous manganese oxides (MnOx) are promising electrocatalyst candidates because of their high surface area and the abundance of Mn. MnOx catalysts exhibit various oxidation states and crystal structures, which critically affect their electrocatalytic activity. These effects remain elusive mainly because the synthesis of oxidation-state-controlled porous MnOx with similar structural properties is challenging. In this work, four different mesoporous manganese oxides (m-MnOx) were synthesized and used as model catalysts to investigate the effects of local structures and Mn valence states on the activity toward oxygen electrocatalysis. The following activity trends were observed: m-Mn2O3 > m-MnO2 > m-MnO > m-Mn3O4 for the ORR and m-MnO2 > m-Mn2O3 > m-MnO ≈ m-Mn3O4 for the OER. These activity trends suggest that high-valent Mn species (Mn(III) and Mn(IV)) with disordered atomic arrangements induced by nanostructuring significantly influence electrocatalysis. In situ X-ray absorption spectroscopy was used to analyze the changes in the oxidation states under the ORR and OER conditions, which showed the surface phase transformation and generation of active species during electrocatalysis.

3.
Nanoscale ; 15(1): 195-203, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36477469

RESUMO

The electrochemical production of H2O2via the two-electron oxygen reduction reaction (2e- ORR) has recently attracted attention as a promising alternative to the current anthraquinone process. Identification of active sites in O-doped carbon materials, which exhibit high activities and selectivities for the 2e- ORR, is important for understanding the selective electrocatalytic process and achieving the rational design of active electrocatalysts. However, this is impeded by the heterogeneous distribution of various active sites on these catalysts. In this study, we exploited the molecular functionalisation approach to implant anthraquinone, benzoic acid, and phenol groups on carbon nanotubes and systematically compared the electrocatalytic activities and selectivities of these functional groups. Among these oxygen functional groups, the anthraquinone group showed the highest surface-area-normalised and active-site-normalised activities.

4.
Acc Chem Res ; 55(18): 2672-2684, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067418

RESUMO

Electrocatalysis is a key driver in promoting the paradigm shift from the current fossil-fuel-based hydrocarbon economy to a renewable-energy-driven hydrogen economy. The success of electrocatalysis hinges primarily on achieving high catalytic selectivity along with maximum activity and sustained longevity. Many electrochemical reactions proceed through multiple pathways, requiring highly selective catalysts.Atomically dispersed metal catalysts have emerged as a new frontier in heterogeneous catalysis. In addition to the widely perceived advantages of maximized active site utilization and substantially reduced metal content, they have shown different catalytic selectivities in some electrocatalytic reactions compared to the traditional nanoparticle (NP)-based catalysts. Although there have been significant advances in their synthesis, the highly energetic nature of a single atomic site has made the preparation of atomically dispersed metal catalysts rely on empiricism rather than rational design. Consequently, the structural comprehension of a single atomic site and the understanding of its unusual electrocatalytic selectivity remain largely elusive.In this Account, we describe our endeavors toward developing general synthetic approaches for atomically dispersed metal catalysts for the discovery of new selective and active electrocatalysts and to understand their catalytic nature. We introduce synthetic approaches to produce a wide range of nonprecious- and precious-metal-based atomically dispersed catalysts and control their coordination environments. Metallomacrocyclic-compound-driven top-down and metal salt/heteroatom layer-based bottom-up strategies, coupled with a SiO2-protective-layer-assisted method, have been developed that can effectively generate single atomic sites while mitigating the formation of metallic NPs. The low-temperature gas-phase ligand exchange method can reversibly tune the coordination structure of the atomically dispersed metal sites. We have used the prepared atomically dispersed metal catalysts as model systems to investigate their electrocatalytic reactivity for renewable energy conversion and commodity chemical production reactions, in which high selectivity is important. The reactions of our interest include the following: (i) the oxygen reduction reaction, where O2 is reduced to either H2O or H2O2 via the four-electron or two electron pathway, respectively; (ii) the CO2 reduction reaction, which should suppress the hydrogen evolution reaction; and (iii) the chlorine evolution reaction, which competes with the oxygen evolution reaction. The type of metal center to which the reactant is directly bound is found to be the most important in determining the selectivity, which originates from the dramatic changes in the binding energy of each metal center with the reactants. The coordination structure surrounding the metal center also has a significant effect on the selectivity; its control can modulate the oxidation state of the metal center, thereby altering the binding strength with the reactants.We envisage that future advances in the synthesis of atomically dispersed metal catalysts, combined with the growing power of computational, spectroscopic, and microscopic methods, will bring their synthesis to the level of rational design. Elaborately designed catalysts can overcome the current limits of catalytic selectivity, which will help establish the field of atomically dispersed metal catalysts as an important branch of catalysis.


Assuntos
Dióxido de Carbono , Cloro , Catálise , Combustíveis Fósseis , Hidrogênio/química , Peróxido de Hidrogênio , Ligantes , Metais , Oxigênio , Energia Renovável , Dióxido de Silício
5.
ACS Appl Mater Interfaces ; 13(50): 59904-59914, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882382

RESUMO

H2O2 electrosynthesis is an emerging clean chemical technology, whose efficiency critically depends on the activity and selectivity of electrocatalysts for two-electron oxygen reduction reaction (2e- ORR). Here, we demonstrate that 2e- ORR activity of oxygen-doped carbons, which have been one of the most promising catalysts for this reaction, can be substantially influenced by the types and concentrations of cations in electrolytes. Heat-treated carbon comprising active oxygen functional groups exhibits cation-dependent 2e- ORR activity trends in alkaline media, following the order Cs+ > K+ > Li+. Importantly, an electrolyte with a high cation concentration (0.1 M KOH + 0.5 M KCl) afforded the highest 2e- ORR mass activity (250 ± 30 A gcat-1 at 0.70 V vs reversible hydrogen electrode) ever reported. We have established that the cation promotion effect correlates with cation-dependent electron-transfer kinetics, which regulates the rate-determining first electron transfer to O2.

6.
Chem Soc Rev ; 49(18): 6632-6665, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780048

RESUMO

The electrochemical reduction of CO2 stores intermittent renewable energy in valuable raw materials, such as chemicals and transportation fuels, while minimizing carbon emissions and promoting carbon-neutral cycles. Recent technoeconomic reports suggested economically feasible target products of CO2 electroreduction and the relative influence of key performance parameters such as faradaic efficiency (FE), current density, and overpotential in the practical industrial-scale applications. Furthermore, fundamental factors, such as available reaction pathways, shared intermediates, competing hydrogen evolution reaction, scaling relations of the intermediate binding energies, and CO2 mass transport limitations, should be considered in relation to the electrochemical CO2 reduction performance. Intensive research efforts have been devoted to designing and developing advanced electrocatalysts and improving mechanistic understanding. More recently, the research focus was extended to the catalyst environment, because the interfacial region can delicately modulate the catalytic activity and provide effective solutions to challenges that were not fully addressed in the material development studies. Herein, we discuss the importance of catalyst-electrolyte interfaces in improving key operational parameters based on kinetic equations. Furthermore, we extensively review previous studies on controlling organic modulators, electrolyte ions, electrode structures, as well as the three-phase boundary at the catalyst-electrolyte interface. The interfacial region modulates the electrocatalytic properties via electronic modification, intermediate stabilization, proton delivery regulation, catalyst structure modification, reactant concentration control, and mass transport regulation. We discuss the current understanding of the catalyst-electrolyte interface and its effect on the CO2 electroreduction activity.

7.
Nat Commun ; 10(1): 5123, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719532

RESUMO

Lignin is a major component of lignocellulosic biomass. Although it is highly recalcitrant to break down, it is a very abundant natural source of valuable aromatic carbons. Thus, the effective valorisation of lignin is crucial for realising a sustainable biorefinery chain. Here, we report a compartmented photo-electro-biochemical system for unassisted, selective, and stable lignin valorisation, in which a TiO2 photocatalyst, an atomically dispersed Co-based electrocatalyst, and a biocatalyst (lignin peroxidase isozyme H8, horseradish peroxidase) are integrated, such that each system is separated using Nafion and cellulose membranes. This cell design enables lignin valorisation upon irradiation with sunlight without the need for any additional bias or sacrificial agent and allows the protection of the biocatalyst from enzyme-damaging elements, such as reactive radicals, gas bubbles, and light. The photo-electro-biochemical system is able to catalyse lignin depolymerisation with a 98.7% selectivity and polymerisation with a 73.3% yield using coniferyl alcohol, a lignin monomer.


Assuntos
Fontes de Energia Bioelétrica , Lignina/química , Fotoquímica , Luz Solar , Biopolímeros/biossíntese , Reatores Biológicos , Dimerização , Peróxido de Hidrogênio/análise , Polimerização
8.
Angew Chem Int Ed Engl ; 58(4): 1100-1105, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30548090

RESUMO

A highly efficient, metal-free carbon nanocatalyst is presented that possesses abundant active, oxygenated graphitic edge sites. The edge site-rich nanocarbon catalyst exhibits about 28 times higher activity for H2 O2 production than a basal plane-rich carbon nanotube with a H2 O2 selectivity over 90 %. The oxidative treatment further promotes the H2 O2 generation activity to reach close to the thermodynamic limit. The optimized nanocarbon catalyst shows a very high H2 O2 production activity, surpassing previously reported catalysts in alkaline media. Moreover, it can stably produce H2 O2 for 16 h with Faradaic efficiency reaching 99 % and accumulated H2 O2 concentration of 24±2 mm. Importantly, we find that the heterogeneous electron transfer kinetics of the carbon-based catalyst is closely related to the electrocatalytic activity, suggesting that first outer-sphere electron transfer to O2 is an important step governing the H2 O2 production rate.

9.
Sci Adv ; 4(6): eaap9360, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29951583

RESUMO

Highly active and durable bifunctional oxygen electrocatalysts have been of pivotal importance for renewable energy conversion and storage devices, such as unitized regenerative fuel cells and metal-air batteries. Perovskite-based oxygen electrocatalysts have emerged as promising nonprecious metal bifunctional electrocatalysts, yet their catalytic activity and stability still remain to be improved. We report a high-performance oxygen electrocatalyst based on a triple perovskite, Nd1.5Ba1.5CoFeMnO9-δ (NBCFM), which shows superior activity and durability for oxygen electrode reactions to single and double perovskites. When hybridized with nitrogen-doped reduced graphene oxide (N-rGO), the resulting NBCFM/N-rGO catalyst shows further boosted bifunctional oxygen electrode activity (0.698 V), which surpasses that of Pt/C (0.801 V) and Ir/C (0.769 V) catalysts and which, among the perovskite-based electrocatalysts, is the best activity reported to date. The superior catalytic performances of NBCFM could be correlated to its oxygen defect-rich structure, lower charge transfer resistance, and smaller hybridization strength between O 2p and Co 3d orbitals.

10.
ACS Nano ; 11(6): 5500-5509, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28599106

RESUMO

Nanoframe electrocatalysts have attracted great interest due to their inherently high active surface area per a given mass. Although recent progress has enabled the preparation of single nanoframe structures with a variety of morphologies, more complex nanoframe structures such as a double-layered nanoframe have not yet been realized. Herein, we report a rational synthetic strategy for a structurally robust Ir-based multimetallic double-layered nanoframe (DNF) structure, nanoframe@nanoframe. By leveraging the differing kinetics of dual Ir precursors and dual transition metal (Ni and Cu) precursors, a core-shell-type alloy@alloy structure could be generated in a simple one-step synthesis, which was subsequently transformed into a multimetallic IrNiCu DNF with a rhombic dodecahedral morphology via selective etching. The use of single Ir precursor yielded single nanoframe structures, highlighting the importance of employing dual Ir precursors. In addition, the structure of Ir-based nanocrystals could be further controlled to DNF with octahedral morphology and CuNi@Ir core-shell structures via a simple tuning of experimental factors. The IrNiCu DNF exhibited high electrocatalytic activity for oxygen evolution reaction (OER) in acidic media, which is better than Ir/C catalyst. Furthermore, IrNiCu DNF demonstrated excellent durability for OER, which could be attributed to the frame structure that prevents the growth and agglomeration of particles as well as in situ formation of robust rutile IrO2 phase during prolonged operation.

11.
ACS Appl Mater Interfaces ; 9(11): 9567-9575, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28244305

RESUMO

Iron and nitrogen codoped carbons (Fe-N/C) have emerged as promising nonprecious metal catalysts for the oxygen reduction reaction (ORR). While Fe-Nx sites have been widely considered as active species for Fe-N/C catalysts, very recently, iron and/or iron carbide encased with carbon shells (Fe-Fe3C@C) has been suggested as a new active site for the ORR. However, most of synthetic routes to Fe-N/C catalysts involve high-temperature pyrolysis, which unavoidably yield both Fe-Nx and Fe-Fe3C@C species, hampering the identification of exclusive role of each species. Herein, in order to establish the respective roles of Fe-Nx and Fe-Fe3C@C sites we rationally designed model catalysts via the phase conversion reactions of Fe3O4 nanoparticles supported on carbon nanotubes. The resulting catalysts selectively contained Fe-Nx, Fe-Fe3C@C, and N-doped carbon (C-Nx) sites. It was revealed that Fe-Nx sites dominantly catalyze ORR via 4-electron (4 e-) pathway, exerting a major role for high ORR activity, whereas Fe-Fe3C@C sites mainly promote 2 e- reduction of oxygen followed by 2 e- peroxide reduction, playing an auxiliary role.

12.
J Am Chem Soc ; 138(45): 15046-15056, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27750429

RESUMO

Iron-nitrogen on carbon (Fe-N/C) catalysts have emerged as promising nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in energy conversion and storage devices. It has been widely suggested that an active site structure for Fe-N/C catalysts contains Fe-Nx coordination. However, the preparation of high-performance Fe-N/C catalysts mostly involves a high-temperature pyrolysis step, which generates not only catalytically active Fe-Nx sites, but also less active large iron-based particles. Herein, we report a general "silica-protective-layer-assisted" approach that can preferentially generate the catalytically active Fe-Nx sites in Fe-N/C catalysts while suppressing the formation of large Fe-based particles. The catalyst preparation consisted of an adsorption of iron porphyrin precursor on carbon nanotube (CNT), silica layer overcoating, high-temperature pyrolysis, and silica layer etching, which yielded CNTs coated with thin layer of porphyrinic carbon (CNT/PC) catalysts. Temperature-controlled in situ X-ray absorption spectroscopy during the preparation of CNT/PC catalyst revealed the coordination of silica layer to stabilize the Fe-N4 sites. The CNT/PC catalyst contained higher density of active Fe-Nx sites compared to the CNT/PC prepared without silica coating. The CNT/PC showed very high ORR activity and excellent stability in alkaline media. Importantly, an alkaline anion exchange membrane fuel cell (AEMFC) with a CNT/PC-based cathode exhibited record high current and power densities among NPMC-based AEMFCs. In addition, a CNT/PC-based cathode exhibited a high volumetric current density of 320 A cm-3 in acidic proton exchange membrane fuel cell. We further demonstrated the generality of this synthetic strategy to other carbon supports.

13.
Nanoscale ; 8(36): 16379-16386, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27714051

RESUMO

The rational design of highly efficient electrocatalysts for the hydrogen evolution reaction (HER) is of prime importance for establishing renewable and sustainable energy systems. The alkaline HER is particularly challenging as it involves a two-step reaction of water dissociation and hydrogen recombination, for which platinum-based binary catalysts have shown promising activity. In this work, we synthesized high performance platinum-nickel-cobalt alloy nanocatalysts for the alkaline HER through a simple synthetic route. This ternary nanostructure with a Cartesian-coordinate-like hexapod shape could be prepared by a one-step formation of core-dual shell Pt@Ni@Co nanostructures followed by a selective removal of the Ni@Co shell. The cobalt precursor brings about a significant impact on the control of size and shape of the nanostructure. The PtNiCo nanohexapods showed a superior alkaline HER activity to Pt/C and binary PtNi hexapods, with 10 times greater specific activity than Pt/C. In addition, the PtNiCo nanohexapods demonstrated excellent activity and durability for the oxygen reduction reaction in acidic media.

14.
Small ; 12(38): 5347-5353, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515995

RESUMO

Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities.

15.
Angew Chem Int Ed Engl ; 54(43): 12622-6, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26331625

RESUMO

Hybridization of organometallic complexes with graphene-based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [Co(II) (acac)2 ] (acac=acetylacetonate), with N-doped graphene-based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt-containing species is coordinated to heterocyclic groups in N-doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co-O4 -N structure.

16.
Chem Commun (Camb) ; 51(31): 6773-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25785568

RESUMO

3D mesoporous graphene (mesoG) was synthesized from [Ni2(EDTA)] (EDTA = ethylenediaminetetraacetate). The material is comprised of interconnected 4 nm-sized hollow carbon shells composed of 3-4 layers of graphene and exhibits high bifunctional electrocatalytic activity as well as high durability for use in oxygen evolution and reduction reactions.

17.
ACS Nano ; 9(4): 3728-39, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25794552

RESUMO

Metal sulfide-based nanostructured materials have emerged as promising catalysts for hydrogen evolution reaction (HER), and significant progress has been achieved in enhancing their activity and durability for the HER. The understanding of nanoscale size-dependent catalytic activities can suggest critical information regarding catalytic reactivity, providing the scientific basis for the design of advanced catalysts. However, nanoscale size effects in metal sulfide-based HER catalysts have not yet been established fully, due to the synthetic difficulty in precisely size-controlled metal sulfide nanoparticles. Here we report the preparation of molybdenum sulfide (MoS2) nanoparticles with monolayer precision from one to four layers with the nearly constant basal plane size of 5 nm, and their size-dependent catalytic activity in the HER. Using density functional theory (DFT) calculations, we identified the most favorable single-, double-, and triple-layer MoS2 model structures for the HER, and calculated elementary step energetics of the HER over these three model structures. Combining HER activity measurements and the DFT calculation results, we establish that the turnover frequency of MoS2 nanoparticles in the HER increases in a quasi-linear manner with decreased layer numbers. Cobalt-promoted MoS2 nanoparticles also exhibited similar HER activity trend. We attribute the higher HER activity of smaller metal sulfide nanoparticles to the higher degree of oxidation, higher Mo-S coordination number, formation of the 1T phase, and lower activation energy required to overcome transition state. This insight into the nanoscale size-dependent HER activity trend will facilitate the design of advanced HER catalysts as well as other hydrotreating catalysts.

18.
Nanoscale ; 6(16): 9734-41, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24998618

RESUMO

Porous graphene nanostructures are of great interest for applications in catalysis and energy storage. However, the fabrication of three-dimensional (3D) macroporous graphene nanostructures with controlled morphology, porosity and surface area still presents significant challenges. Here we introduce an ice-templated self-assembly approach for the integration of two-dimensional graphene nanosheets into hierarchically porous graphene nanoscroll networks, where the morphology of porous structures can be easily controlled by varying the pH conditions during the ice-templated self-assembly process. We show that freeze-casting of reduced graphene oxide (rGO) solution results in the formation of 3D porous graphene microfoam below pH 8 and hierarchically porous graphene nanoscroll networks at pH 10. In addition, we demonstrate that graphene nanoscroll networks show promising electrocatalytic activity for the oxygen reduction reaction (ORR).

19.
Angew Chem Int Ed Engl ; 53(16): 4102-6, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24554521

RESUMO

A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

20.
J Nanosci Nanotechnol ; 13(12): 7794-800, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266142

RESUMO

Catalytic pyrolysis of Undaria Pinnatifida was carried out over a nanoporous Al-SBA-15 catalyst for the first time. Pt nanoparticles were added to Al-SBA-15 to generate a Pt/Al-SBA-15 catalyst. The effect of the addition of the Pt nanoparticles on the catalytic pyrolysis was investigated. For rapid product analysis and catalyst evaluation, a pyrolysis-gas chromatography/mass spectrometry was used. The characteristics of the catalysts were analyzed using X-ray diffraction, nitrogen adsorption-desorption, transmission electron microscope, NH3 temperature programmed desorption, and inductively coupled plasma optical emission spectrometer. Compared to the non-catalytic pyrolysis, catalytic pyrolysis over Al-SBA-15 produced a higher-quality bio-oil with a high stability and a low oxygen content. When Pt/Al-SBA-15 was used, compared to Al-SBA-15, the improvement of bio-oil quality was more profound; the yield of high-value-added aromatics increased, while the yields of acids and oxygenates decreased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...