Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(5): 111157, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926459

RESUMO

The function of the cerebral cortex depends on various types of interneurons (cortical interneurons [cINs]) and their appropriate allocation to the cortical layers. Caudal ganglionic eminence-derived cINs (cGE-cINs) are enriched in superficial layers. Developmental mechanisms directing cGE-cINs toward superficial layers remain poorly understood. We examine how developmental and final positioning of cGE-cINs are influenced by the Cxcl12, Cxcr4, Ackr3 module, the chief attractant system guiding medial ganglionic eminence-derived cINs (mGE-cINs). We find that Cxcl12 attracts cGE-cINs through Cxcr4 and supports their layer-specific positioning in the developing cortex. This requires the prevention of excessive Cxcr4 stimulation by Ackr3-mediated Cxcl12 sequestration. Postnatally, Ackr3 confines Cxcl12 action to the marginal zone. Unlike mGE-cINs, cGE-cINs continue to express Cxcr4 at early postnatal stages, which permits cGE-cINs to become positioned in the forming layer 1. Thus, chemoattraction by Cxcl12 guides cGE-cINs and holds them in superficial cortical layers.


Assuntos
Córtex Cerebral , Interneurônios , Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Eminência Mediana , Mesoderma
2.
PLoS Genet ; 17(3): e1009441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739968

RESUMO

Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research.


Assuntos
Proteínas de Ciclo Celular/genética , Diferenciação Celular , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Córtex Cerebral/citologia , Neurônios GABAérgicos/citologia , Hipocampo/metabolismo , Camundongos , Neocórtex , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Telencéfalo/citologia , Telencéfalo/metabolismo
3.
Nat Neurosci ; 23(3): 351-362, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042176

RESUMO

Monocyte-derived and tissue-resident macrophages are ontogenetically distinct components of the innate immune system. Assessment of their respective functions in pathology is complicated by changes to the macrophage phenotype during inflammation. Here we find that Cxcr4-CreER enables permanent genetic labeling of hematopoietic stem cells (HSCs) and distinguishes HSC-derived monocytes from microglia and other tissue-resident macrophages. By combining Cxcr4-CreER-mediated lineage tracing with Cxcr4 inhibition or conditional Cxcr4 ablation in photothrombotic stroke, we find that Cxcr4 promotes initial monocyte infiltration and subsequent territorial restriction of monocyte-derived macrophages to infarct tissue. After transient focal ischemia, Cxcr4 deficiency reduces monocyte infiltration and blunts the expression of pattern recognition and defense response genes in monocyte-derived macrophages. This is associated with an altered microglial response and deteriorated outcomes. Thus, Cxcr4 is essential for an innate-immune-system-mediated defense response after cerebral ischemia. We further propose Cxcr4-CreER as a universal tool to study functions of HSC-derived cells.


Assuntos
Isquemia Encefálica/imunologia , Células-Tronco Hematopoéticas/imunologia , Microglia/imunologia , Monócitos/imunologia , Receptores CXCR4/metabolismo , Acidente Vascular Cerebral/imunologia , Animais , Isquemia Encefálica/patologia , Linhagem da Célula , Infarto Cerebral/imunologia , Infarto Cerebral/patologia , Células-Tronco Hematopoéticas/patologia , Imunidade Inata/genética , Ataque Isquêmico Transitório/imunologia , Ataque Isquêmico Transitório/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Monócitos/patologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Acidente Vascular Cerebral/patologia , Trombose/patologia , Resultado do Tratamento
4.
Cell Rep ; 26(6): 1473-1488.e9, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726732

RESUMO

Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of ß-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and ß-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas ß-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, ß-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without ß-arrestin involvement in chemokine sequestration and non-canonical signaling.


Assuntos
Movimento Celular , Interneurônios/metabolismo , Receptores CXCR/metabolismo , Animais , Células CHO , Quimiocina CXCL12/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores CXCR/genética , beta-Arrestinas/metabolismo
5.
Pathol Res Pract ; 211(3): 208-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25468811

RESUMO

AIMS: Desmogleins (DSGs) are components of the cell-cell connecting desmosomes. Desmosomal proteins have been found dysregulated in various cancers. Here we studied the role of DSGs in human lung cancer. METHODS: Expression of DSG1-3 mRNA in lung cancer cell lines and human bronchial epithelial cells (HBEC) was examined by real time RT-PCR. Methylation status of DSG1-2 was evaluated by demethylation test and bisulfite sequencing (BS). Moreover, DSG1-3 protein expression was analysed in 112 primary lung tumor samples by immunohistochemistry (IHC) on tissue microarrays. RESULTS: It turned out that DSG1-3 was downregulated in most of the lung cancer cell lines. Reexpression of DSG2 and DSG3 was found in several cancer cell lines after demethylation treatment with 5-aza-2'-deoxycytidine (DAC), a DNA methyltransferase inhibitor. Complete or partial methylation of DSG2 promoter region was detected in 5 out of 6 cancer cell lines by BS. In primary lung tumors, higher protein expression of DSG2 and DSG3 correlated to the diagnosis of squamous cell lung carcinoma (SCC) (P=0.009 and P<0.001, respectively), additionally, a lower expression of DSG3 was significantly linked to higher tumor grade (P=0.012). CONCLUSIONS: Our data suggest that downregulation of DSG2 and DSG3 could be partially explained by DNA methylation. DSG2 and DSG3 might be potential diagnostic markers for SCC, and DSG3 could be a potential differentiation marker for lung cancer.


Assuntos
Carcinoma de Células Escamosas/patologia , Desmogleína 1/metabolismo , Desmogleína 2/metabolismo , Desmogleína 3/metabolismo , Neoplasias Pulmonares/patologia , Pulmão/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...