Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 196: 106733, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408709

RESUMO

Microencapsulation of active pharmaceutical ingredients (APIs) for preparation of long acting injectable (LAI) formulations is an auspicious technique to enable preclinical characterization of a broad variety of APIs, ideally independent of their physicochemical and pharmacokinetic (PK) characteristics. During early API discovery, tunable LAI formulations may enable pharmacological proof-of-concept for the given variety of candidates by tailoring the level of plasma exposure over the duration of various timespans. Although numerous reports on small scale preparation methods for LAIs utilizing copolymers of lactic and glycolic acid (PLGA) and polymers of lactic acid (PLA) highlight their potential, application in formulation screening and use in preclinical in vivo studies is yet very limited. Transfer from downscale formulation preparation to in vivo experiments is hampered in early preclinical API screening by the large number of API candidates with simultaneously very limited available amount in the lower sub-gram scale, lack of formulation stability and deficient tunability of sustained release. We hereby present a novel comprehensive platform tool for tailored extended-release formulations, aiming to support a variety of preclinical in vivo experiments with ranging required plasma exposure levels and timespans. A novel small-scale spray drying process was successfully implemented by using an air brush based instrument for preparation of PLGA and PLA based formulations. Using Design of Experiments (DoE), required API amount of 250 mg was demonstrated to suffice for identification of dominant polymer characteristics with largest impact on sustained release capability for an individual API. BI-3231, a hydrophilic and weakly acidic small compound with good water solubility and permeability, but low metabolic stability, was used as an exemplary model for one of the many candidates during API discovery. Furthermore, an in vitro to in vivo correlation (IVIVC) of API release rate was established in mice, which enabled the prediction of in vivo plasma concentration plateaus after single subcutaneous injection, using only in vitro dissolution profiles of screened formulations. By tailoring LAI formulations and their doses for acute and sub-chronic preclinical experiments, we exemplary demonstrate the practical use for BI-3231. Pharmacological proof-of-concept could be enabled whilst circumventing the need of multiple administration as result of extensive hepatic metabolism and simultaneously superseding numerous in vivo experiments for formulation tailoring.

2.
J Pharm Sci ; 113(2): 386-395, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951471

RESUMO

A Biopharmaceutics Classification System (BCS)-based biowaiver monograph is presented for isavuconazonium sulfate. A BCS-based biowaiver is a regulatory option to substitute appropriate in vitro data for in vivo bioequivalence studies. Isavuconazonium sulfate is the prodrug of isavuconazole, a broad-spectrum azole antifungal indicated for invasive fungal infections. While the prodrug can be classified as a BCS Class III drug with high solubility but low permeability, the parent drug can be classified as a BCS Class II drug with low solubility but high permeability. Interestingly, the in vivo behavior of both is additive and leads isavuconazonium sulfate to act like a BCS class I drug substance after oral administration. In this work, experimental solubility and dissolution data were evaluated and compared with available literature data to investigate whether it is feasible to approve immediate release solid oral dosage forms containing isavuconazonium sulfate according to official guidance from the FDA, EMA and/or ICH. The risks associated with waiving a prodrug according to the BCS-based biowaiver guidelines are reviewed and discussed, noting that current regulations are quite restrictive on this point. Further, results show high solubility but instability of isavuconazonium sulfate in aqueous media. Although experiments on the dissolution of the capsule contents confirmed 'very rapid' dissolution of the active pharmaceutical ingredient (API) isavuconazonium sulfate, its release from the commercial marketed capsule formulation Cresemba is limited by the choice of capsule shell material, providing an additional impediment to approval of generic versions via the BCS-Biowaiver approach.


Assuntos
Nitrilas , Pró-Fármacos , Piridinas , Triazóis , Disponibilidade Biológica , Equivalência Terapêutica , Biofarmácia/métodos , Administração Oral , Solubilidade , Formas de Dosagem , Permeabilidade
3.
Eur J Pharm Sci ; 193: 106684, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154507

RESUMO

BACKGROUND: Pharmaceutical salts of poorly soluble drugs typically dissolve faster than their corresponding free acid or base, resulting in supersaturation under some circumstances. The key questions relevant to drug bioavailability "does the salt invoke the supersaturated state?" and, if so, "does precipitation occur?" remain. To answer these questions, different types of dissolution equipment are often used at different stages of the development process. AIM: To compare the dissolution behaviour of ibuprofen and its sodium and lysine salts in the USP 2 apparatus and the µDISS Profiler™ apparatus. The dissolution, supersaturation of the salt forms and precipitation to the free acid of ibuprofen were characterized along with the dissolution of the free acid form. METHODS: Media containing different concentrations of the salt-forming counterions - sodium and lysine - were used to investigate the influence of the type of dissolution apparatus used for the study on dissolution, supersaturation and precipitation behaviour. KEY RESULTS: Supersaturation was observed for both the sodium and lysinate salts of ibuprofen in all USP 2 apparatus and µDISS Profiler™ experiments. However, precipitation tended to be far greater in the µDISS Profiler™ than in the USP 2 apparatus. The difference was most pronounced in pH 4.5 acetate buffer, in which precipitation was observed exclusively in experiments with the µDISS Profiler™. CONCLUSION: Choice of dissolution apparatus can affect the dissolution/supersaturation/precipitation characteristics of pharmaceutical salts. This has to be carefully taken into account when investigating salts over different stages of pharmaceutical research and development.


Assuntos
Ibuprofeno , Sais , Ibuprofeno/química , Solubilidade , Lisina , Preparações Farmacêuticas , Sódio
4.
ACS Sens ; 8(11): 4014-4019, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856082

RESUMO

We report here the development of two different sensing strategies based on the use of antigen-conjugated nucleic acid strands for the detection of a bispecific antibody against the tumor-related proteins Mucin1 and epidermal growth factor receptor. Both approaches work well in serum samples (nanomolar sensitivity), show high specificity against the two monospecific antibodies, and are rapid. The results presented here demonstrate the versatility of DNA-based platforms for the detection of bispecific antibodies and could represent a versatile alternative to other more reagent-intensive and time-consuming analytical approaches.


Assuntos
Anticorpos Biespecíficos , Anticorpos Biespecíficos/metabolismo
6.
J Pharm Sci ; 112(5): 1287-1304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36402198

RESUMO

This article reports the outcome of an in silico analysis of more than 12,000 small molecule drugs and drug impurities, identifying the nitrosatable structures, assessing their potential to form nitrosamines under relevant conditions and the challenges to determine compound-specific AIs based on data available or read-across approaches for these nitrosamines and their acceptance by health authorities. Our data indicate that the presence of nitrosamines in pharmaceuticals is likely more prevalent than originally expected. In total, 40.4 % of the analyzed APIs and 29.6 % of the API impurities are potential nitrosamine precursors. Most structures identified through our workflow could form complex API-related nitrosamines, so-called nitrosamine drug substance related impurities (NDSRIs), although we also found structures that could release the well-known small and potent nitrosamines NDMA, NDEA, and others. Due to common structural motifs including secondary or tertiary amine moieties, whole essential drug classes such as beta blockers and ACE inhibitors are at risk. To avoid the risk of drug shortages or even the complete loss of therapeutic options, it will be essential that the well-established ICH M7 principles remain applicable for nitrosamines and that that the industry and regulatory authorities keep an open communication not only about the science but also to make sure there is a good balance between risk and benefit to patients.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Aminas/química , Preparações Farmacêuticas
8.
Int J Pharm ; 620: 121740, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421534

RESUMO

Since late 2019, concerns regarding trace levels of the probable human carcinogen N-dimethylnitrosamine (NDMA) in Metformin-containing pharmaceuticals have been an issue if they exceeded the maximum allowable intake of 96 ng/day for a medicine with long-term intake. Here, we report results from an extensive analysis of NDMA content along the active pharmaceutical ingredient (API) manufacturing process as well as two different drug product manufacturing processes. Our findings confirm that Metformin API is not a significant source of NDMA found in Metformin pharmaceuticals and that NDMA is created at those steps of the drug product manufacturing that introduce heat and nitrite. We demonstrate that reduction of nitrite from excipients is an effective means to reduce NDMA in the drug product. Limiting residual dimethylamine in the API has proven to be another important factor for NDMA control as dimethylamine leads to formation of NDMA in the drug products. Furthermore, analysis of historical batches of drug products has shown that NDMA may increase during storage, but the levels reached were not shelf-life limiting for the products under study.


Assuntos
Dimetilnitrosamina , Metformina , Dimetilaminas , Dimetilnitrosamina/análise , Excipientes , Humanos , Nitritos
9.
Eur J Pharm Sci ; 168: 106026, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597792

RESUMO

BACKGROUND: For nearly three years, the concerns regarding trace levels of N-nitrosamines in pharmaceuticals and the associated cancer risk have significantly expanded and are a major issue facing the global pharmaceutical industry. N-nitrosodimethylamine (NDMA) found in formulations of the popular anti-diabetic drug metformin is a prominent example. This has resulted in product recalls raising the profile within the media. Issues of method robustness, sample preparation and several unexpected sources of nitrosamine contamination have been highlighted as false positive risks. It has become apparent that the identification of the root causes of artefactual formation of nitrosamines must be identified to mitigate risk associated with the analysis. METHODS: A comparison study between four laboratories, across three companies was designed, employing orthogonal mass spectrometric methods for the quantification of NDMA in two metformin immediate release (IR) formulations and one extended release (XR) formulation. These were 2x LC-MS/MS, GC-MS/MS and GC-HRMS. RESULTS: Good agreement of results was obtained for the IR formulations. However, we measured higher concentrations of NDMA in the XR formulation using GC-MS/MS compared to LC-MS/MS. We could show that this was due to artefactual (in situ) formation of NDMA when samples were extracted with dichloromethane. Removal of dimethylamine (DMA) and nitrite from the extracted sample or the addition of a nitrosation scavenger are shown to be effective remedies. NDMA in situ formation was not observed in 10% MeOH or acetonitrile. CONCLUSION: Metformin pharmaceuticals contain traces of the API impurity DMA as well as inorganic nitrite from excipients. This can lead to artefactual formation of NDMA and hence false positive results if DCM is used for sample extraction. Similar artefacts are likely also in other pharmaceuticals if these contain the secondary amine precursor of the respective nitrosamine analyte.


Assuntos
Dimetilnitrosamina , Metformina , Cromatografia Líquida , Dimetilnitrosamina/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem
10.
J Pharm Sci ; 111(1): 206-213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662544

RESUMO

Low solubility of drugs represents a major challenge during research and development. Ways to overcome this are either focused on formulation development or optimization of the molecular structure of the drug. The latter is not only governed by the constitution of the molecule but also by its stereochemistry. Development of enantiomers in contrast to racemic mixtures has become the state of the art over the last decades as this leads to higher potency and selectivity. Thus, enantiopure drugs require lower doses compared to their racemates. Additionally, selecting one enantiomer also leads to improved solubility of the drug compared to its racemic compound. While this effect is well known for enantiomers and racemic compounds where chirality is introduced via a chiral central atom, here we describe the first case where improved solubility is realized by selecting an axially chiral atropisomer.


Assuntos
Solubilidade , Estrutura Molecular , Estereoisomerismo
12.
J Pharm Sci ; 110(5): 1921-1930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609523

RESUMO

New drug candidates often require bio-enabling formation technologies such as lipid-based formulations, solid dispersions, or nanosized drug formulations. Development of such more sophisticated delivery systems generally requires higher resource investment compared to a conventional oral dosage form, which might slow down clinical development. To achieve the biopharmaceutical objectives while enabling rapid cost effective development, it is imperative to identify a suitable formulation technique for a given drug candidate as early as possible. Hence many companies have developed internal decision trees based mostly on prior organizational experience, though they also contain some arbitrary elements. As part of the EU funded PEARRL project, a number of new decision trees are here proposed that reflect both the current scientific state of the art and a consensus among the industrial project partners. This commentary presents and discusses these, while also going beyond this classical expert approach with a pilot study using emerging machine learning, where the computer suggests formulation strategy based on the physicochemical and biopharmaceutical properties of a molecule. Current limitations are discussed and an outlook is provided for likely future developments in this emerging field of pharmaceutics.


Assuntos
Preparações Farmacêuticas , Administração Oral , Biofarmácia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Projetos Piloto , Solubilidade
13.
Eur J Pharm Sci ; 141: 105113, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655207

RESUMO

Mesoporous silica has emerged as an enabling formulation for poorly soluble active pharmaceutical ingredients (APIs). Unlike other formulations, mesoporous silica typically does not inhibit precipitation of supersaturated API therefore, a suitable precipitation inhibitor (PI) should be added to increase absorption from the gastrointestinal (GI) tract. However, there is limited research about optimal processes for combining PIs with silica formulations. Typically, the PI is added by simply blending the API-loaded silica mechanically with the selected PI. This has the drawback of an additional blending step and may also not be optimal with regard to release of drug and PI. By contrast, loading PI simultaneously with the API onto mesoporous silica, i.e. co-incorporation, is attractive from both a performance and practical perspective. The aim of this study was to demonstrate the utility of a co-incorporation approach for combining PIs with silica formulations, and to develop a mechanistic rationale for improvement of the performance of silica formulations using the co-incorporation approach. The results indicate that co-incorporating HPMCAS with glibenclamide onto silica significantly improved the extent and duration of drug supersaturation in single-medium and transfer dissolution experiments. Extensive spectroscopic characterization of the formulation revealed that the improved performance was related to the formation of drug-polymer interactions already in the solid state; the immobilization of API-loaded silica on HPMCAS plates, which prevents premature release and precipitation of API; and drug-polymer proximity on disintegration of the formulation, allowing for rapid onset of precipitation inhibition. The data suggests that co-incorporating the PI with the API is appealing for silica formulations from both a practical and formulation performance perspective.


Assuntos
Portadores de Fármacos/química , Glibureto/química , Hipoglicemiantes/química , Metilcelulose/análogos & derivados , Dióxido de Silício/química , Precipitação Química , Liberação Controlada de Fármacos , Metilcelulose/química , Porosidade
14.
Pharmaceutics ; 11(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689980

RESUMO

Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.

15.
Eur J Pharm Sci ; 132: 142-156, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30877067

RESUMO

Supersaturating formulations are widely used to improve the oral bioavailability of poorly soluble drugs. However, supersaturated solutions are thermodynamically unstable and such formulations often must include a precipitation inhibitor (PI) to sustain the increased concentrations to ensure that sufficient absorption will take place from the gastrointestinal tract. Recent advances in understanding the importance of drug-polymer interaction for successful precipitation inhibition have been encouraging. However, there still exists a gap in how this newfound understanding can be applied to improve the efficiency of PI screening and selection, which is still largely carried out with trial and error-based approaches. The aim of this study was to demonstrate how drug-polymer mixing enthalpy, calculated with the Conductor like Screening Model for Real Solvents (COSMO-RS), can be used as a parameter to select the most efficient precipitation inhibitors, and thus realize the most successful supersaturating formulations. This approach was tested for three different Biopharmaceutical Classification System (BCS) II compounds: dipyridamole, fenofibrate and glibenclamide, formulated with the supersaturating formulation, mesoporous silica. For all three compounds, precipitation was evident in mesoporous silica formulations without a precipitation inhibitor. Of the nine precipitation inhibitors studied, there was a strong positive correlation between the drug-polymer mixing enthalpy and the overall formulation performance, as measured by the area under the concentration-time curve in in vitro dissolution experiments. The data suggest that a rank-order based approach using calculated drug-polymer mixing enthalpy can be reliably used to select precipitation inhibitors for a more focused screening. Such an approach improves efficiency of precipitation inhibitor selection, whilst also improving the likelihood that the most optimal formulation will be realized.


Assuntos
Dipiridamol/química , Composição de Medicamentos/métodos , Fenofibrato/química , Glibureto/química , Modelos Químicos , Polímeros/química , Precipitação Química , Estabilidade de Medicamentos , Estrutura Molecular , Dióxido de Silício/química , Solubilidade , Solventes/química , Termodinâmica
16.
J Pharm Pharmacol ; 71(4): 483-509, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29770440

RESUMO

OBJECTIVES: Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection. KEY FINDINGS: Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection. SUMMARY: Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.


Assuntos
Precipitação Química/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Humanos , Modelos Moleculares , Preparações Farmacêuticas/química , Solubilidade , Tecnologia Farmacêutica/métodos
17.
J Pharm Pharmacol ; 71(4): 464-482, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30070363

RESUMO

OBJECTIVES: This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug. KEY FINDINGS: Crystal lattice energy and the octanol-water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract. Different oral formulation strategies are discussed in the present review, including lipid-based delivery, amorphous solid dispersions, mesoporous silica, nanosuspensions and cyclodextrin formulations. SUMMARY: Current literature suggests that selection of formulation approaches in pharmaceutics is still highly dependent on the availability of technological expertise in a company or research group. Encouraging is that, recent advancements point to more structured and scientifically based development approaches. More research is still needed to better link physicochemical drug properties to pharmaceutical formulation design.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/química , Solubilidade
18.
J Pharm Pharmacol ; 71(4): 441-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29978475

RESUMO

OBJECTIVES: Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water-soluble drugs. KEY FINDINGS: An overview of the different experimental and calculation methods to determine solubility parameters is provided, which covers from classical to modern approaches. In the pharmaceutical field, solubility parameters are primarily used to guide organic solvent selection, cocrystals and salt screening, lipid-based delivery, solid dispersions and nano- or microparticulate drug delivery systems. Solubility parameters have been applied for a quantitative assessment of mixtures, or they are simply used to rank excipients for a given drug. SUMMARY: In particular, partial solubility parameters hold great promise for aiding the development of poorly soluble drug delivery systems. This is particularly true in early-stage development, where compound availability and resources are limited. The experimental determination of solubility parameters has its merits despite being rather labour-intensive because further data can be used to continuously improve in silico predictions. Such improvements will ensure that solubility parameters will also in future guide scientists in finding suitable drug formulations.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Desenvolvimento de Medicamentos/métodos , Excipientes/química , Humanos , Lipídeos/química , Tamanho da Partícula , Preparações Farmacêuticas/química , Solubilidade , Solventes/química , Água/química
19.
Angew Chem Int Ed Engl ; 57(29): 9150-9153, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29409149

RESUMO

The absolute configuration of active pharmaceutical ingredients (APIs) was determined by generating salts of the active pharmaceutical ingredient (API) with counterions of known chirality, and determining the crystal structures by X-ray powder diffraction. This approach avoids the (often tedious) growth of single crystals, and is successful with very limited quantities of material (less than 1 mg). The feasibility of the method is demonstrated on five examples, and its limitations are discussed as well.


Assuntos
Preparações Farmacêuticas/química , Modelos Moleculares , Conformação Molecular , Preparações Farmacêuticas/síntese química , Difração de Pó , Raios X
20.
J Pharm Pharmacol ; 69(10): 1284-1292, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28631822

RESUMO

OBJECTIVES: Mesoporous silicas (SLC) have demonstrated considerable potential to improve bioavailability of poorly soluble drugs by facilitating rapid dissolution and generating supersaturation. The addition of certain polymers can further enhance the dissolution of these formulations by preventing drug precipitation. This study uses fenofibrate as a model drug to investigate the performance of an SLC-based formulation, delivered with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as a precipitation inhibitor, in pigs. The ability of biorelevant dissolution testing to predict the in vivo performance was also assessed. KEY FINDINGS: Fenofibrate-loaded mesoporous silica (FF-SLC), together with HPMCAS, displayed significant improvements in biorelevant dissolution tests relative to a reference formulation consisting of a physical mixture of crystalline fenofibrate with HPMCAS. In vivo assessment in fasted pigs demonstrated bioavailabilities of 86.69 ± 35.37% with combination of FF-SLC and HPMCAS in capsule form and 75.47 ± 14.58% as a suspension, compared to 19.92 ± 9.89% with the reference formulation. A positive correlation was identified between bioavailability and dissolution efficiency. CONCLUSIONS: The substantial improvements in bioavailability of fenofibrate from the SLC-based formulations confirm the ability of this formulation strategy to overcome the dissolution and solubility limitations, further raising the prospects of a future commercially available SLC-based formulation.


Assuntos
Fenofibrato/administração & dosagem , Fenofibrato/metabolismo , Metilcelulose/análogos & derivados , Dióxido de Silício/administração & dosagem , Dióxido de Silício/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Formas de Dosagem , Hipolipemiantes/administração & dosagem , Hipolipemiantes/metabolismo , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/metabolismo , Porosidade , Solubilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...