Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Rev ; 13(1): 5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167004

RESUMO

BACKGROUND: Iron deficiency (ID) is the leading cause of anemia worldwide. The prevalence of preoperative ID ranges from 23 to 33%. Preoperative anemia is associated with worse outcomes, making it important to diagnose and treat ID before elective surgery. Several studies indicated the effectiveness of intravenous iron supplementation in iron deficiency with or without anemia (ID(A)). However, it remains challenging to establish reliable evidence due to heterogeneity in utilized study outcomes. The development of a core outcome set (COS) can help to reduce this heterogeneity by proposing a minimal set of meaningful and standardized outcomes. The aim of our systematic review was to identify and assess outcomes reported in randomized controlled trials (RCTs) and observational studies investigating iron supplementation in iron-deficient patients with or without anemia. METHODS: We searched MEDLINE, CENTRAL, and ClinicalTrials.gov systematically from 2000 to April 1, 2022. RCTs and observational studies investigating iron supplementation in patients with a preoperative diagnosis of ID(A), were included. Study characteristics and reported outcomes were extracted. Outcomes were categorized according to an established outcome taxonomy. Quality of outcome reporting was assessed with a pre-specified tool. Reported clinically relevant differences for sample size calculation were extracted. RESULTS: Out of 2898 records, 346 underwent full-text screening and 13 studies (five RCTs, eight observational studies) with sufficient diagnostic inclusion criteria for iron deficiency with or without anemia (ID(A)) were eligible. It is noteworthy to mention that 49 studies were excluded due to no confirmed diagnosis of ID(A). Overall, 111 outcomes were structured into five core areas including nine domains. Most studies (92%) reported outcomes within the 'blood and lymphatic system' domain, followed by "adverse event" (77%) and "need for further resources" (77%). All of the latter reported on the need for blood transfusion. Reported outcomes were heterogeneous in measures and timing. Merely, two (33%) of six prospective studies were registered prospectively of which one (17%) showed no signs of selective outcome reporting. CONCLUSION: This systematic review comprehensively depicts the heterogeneity of reported outcomes in studies investigating iron supplementation in ID(A) patients regarding exact definitions and timing. Our analysis provides a systematic base for consenting to a minimal COS. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020214247.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Humanos , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/prevenção & controle , Ferro/uso terapêutico , Medidas de Resultados Relatados pelo Paciente
2.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607273

RESUMO

Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.


Assuntos
Actinas , Proteínas de Membrana , Proteínas dos Microfilamentos , Atrofia Muscular Espinal , Receptor trkB , Humanos , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptor trkB/metabolismo
3.
Acta Neuropathol Commun ; 8(1): 116, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709255

RESUMO

Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Animais , Metabolismo Energético , Camundongos , Biossíntese de Proteínas , Proteinopatias TDP-43/metabolismo , Transcriptoma
4.
iScience ; 23(2): 100826, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31981925

RESUMO

Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Cav2.1/Cav2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Cav2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca2+ influx and elevated Cav2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca2+ signaling and Ca2+ homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function.

5.
Neuroscience ; 386: 24-40, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29928949

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal motoneuron disorder in children with unknown etiology. The disease is caused by mutations in the IGHMBP2 gene, encoding a Super Family 1 (SF1)-type RNA/DNA helicase. IGHMBP2 is a cytosolic protein that binds to ribosomes and polysomes, suggesting a role in mRNA metabolism. Here we performed morphological and functional analyses of isolated immunoglobulin µ-binding protein 2 (Ighmbp2)-deficient motoneurons to address the question whether the SMARD1 phenotype results from de-regulation of protein biosynthesis. Ighmbp2-deficient motoneurons exhibited only moderate morphological aberrations such as a slight increase of axonal branches. Consistent with the rather mild phenotypic aberrations, RNA sequencing of Ighmbp2-deficient motoneurons revealed only minor transcriptome alterations compared to controls. Likewise, we did not detect any global changes in protein synthesis using pulsed SILAC (Stable Isotope Labeling by Amino acids in Cell culture), FUNCAT (FlUorescent Non-Canonical Amino acid Tagging) and SUnSET (SUrface SEnsing of Translation) approaches. However, we observed reduced ß-actin protein levels at the growth cone of Ighmbp2-deficient motoneurons which was accompanied by reduced level of IMP1/ZBP1, a known interactor of ß-actin mRNA. Fluorescence Recovery after Photobleaching (FRAP) studies revealed translational down-regulation of an eGFP-myr-ß-actin 3'UTR mRNA in growth cones. Local translational regulation of ß-actin mRNA was dependent on the 3' UTR but independent of direct Ighmbp2-binding to ß-actin mRNA. Taken together, our data indicate that Ighmbp2 deficiency results in local but modest disruption of protein biosynthesis which might partially contribute to the motoneuron defects seen in SMARD1.


Assuntos
Actinas/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , RNA Mensageiro/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Gravidez , Biossíntese de Proteínas/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia
6.
Proc Natl Acad Sci U S A ; 115(12): E2859-E2868, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507242

RESUMO

Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth. Here, we used individual nucleotide-resolution cross-linking and immunoprecipitation (iCLIP) to determine the RNA interactome of hnRNP R in motoneurons. We identified ∼3,500 RNA targets, predominantly with functions in synaptic transmission and axon guidance. Among the RNA targets identified by iCLIP, the noncoding RNA 7SK was the top interactor of hnRNP R. We detected 7SK in the nucleus and also in the cytosol of motoneurons. In axons, 7SK localized in close proximity to hnRNP R, and depletion of hnRNP R reduced axonal 7SK. Furthermore, suppression of 7SK led to defective axon growth that was accompanied by axonal transcriptome alterations similar to those caused by hnRNP R depletion. Using a series of 7SK-deletion mutants, we show that the function of 7SK in axon elongation depends on its interaction with hnRNP R but not with the PTEF-B complex involved in transcriptional regulation. These results propose a role for 7SK as an essential interactor of hnRNP R to regulate its function in axon maintenance.


Assuntos
Axônios/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios Motores/fisiologia , RNA Nuclear Pequeno/metabolismo , Regiões 3' não Traduzidas , Animais , Núcleo Celular/genética , Citosol/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas/genética , Imunoprecipitação/métodos , Camundongos , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Transcriptoma/genética
7.
Front Mol Neurosci ; 10: 346, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163025

RESUMO

Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, ß2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of ß-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon ß-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.

8.
Methods Mol Biol ; 1654: 231-241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986794

RESUMO

In highly polarized cells such as neurons, most RNA molecules are not randomly distributed but sorted into different compartments. So far, methods to analyze the transcriptome in distinct subcellular compartments are not well established. Here, we first describe the culturing of primary motoneurons in compartmentalized chambers to separate the axons from the somatodendritic compartment. Second, we introduce a method for whole transcriptome amplification followed by high-throughput sequencing to analyze the RNA composition of these two different compartments in neuronal cells.


Assuntos
Axônios/metabolismo , Neurônios Motores/metabolismo , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA