Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2215688121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498705

RESUMO

Equity is core to sustainability, but current interventions to enhance sustainability often fall short in adequately addressing this linkage. Models are important tools for informing action, and their development and use present opportunities to center equity in process and outcomes. This Perspective highlights progress in integrating equity into systems modeling in sustainability science, as well as key challenges, tensions, and future directions. We present a conceptual framework for equity in systems modeling, focused on its distributional, procedural, and recognitional dimensions. We discuss examples of how modelers engage with these different dimensions throughout the modeling process and from across a range of modeling approaches and topics, including water resources, energy systems, air quality, and conservation. Synthesizing across these examples, we identify significant advances in enhancing procedural and recognitional equity by reframing models as tools to explore pluralism in worldviews and knowledge systems; enabling models to better represent distributional inequity through new computational techniques and data sources; investigating the dynamics that can drive inequities by linking different modeling approaches; and developing more nuanced metrics for assessing equity outcomes. We also identify important future directions, such as an increased focus on using models to identify pathways to transform underlying conditions that lead to inequities and move toward desired futures. By looking at examples across the diverse fields within sustainability science, we argue that there are valuable opportunities for mutual learning on how to use models more effectively as tools to support sustainable and equitable futures.

2.
Proc Natl Acad Sci U S A ; 121(5): e2215685121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227646

RESUMO

Future climate change can cause more days with poor air quality. This could trigger more alerts telling people to stay inside to protect themselves, with potential consequences for health and health equity. Here, we study the change in US air quality alerts over this century due to fine particulate matter (PM2.5), who they may affect, and how they may respond. We find air quality alerts increase by over 1 mo per year in the eastern United States by 2100 and quadruple on average. They predominantly affect areas with high Black populations and leakier homes, exacerbating existing inequalities and impacting those less able to adapt. Reducing emissions can offer significant annual health benefits ($5,400 per person) by mitigating the effect of climate change on air pollution and its associated risks of early death. Relying on people to adapt, instead, would require them to stay inside, with doors and windows closed, for an extra 142 d per year, at an average cost of $11,000 per person. It appears likelier, however, that people will achieve minimal protection without policy to increase adaptation rates. Boosting adaptation can offer net benefits, even alongside deep emission cuts. New adaptation policies could, for example: reduce adaptation costs; reduce infiltration and improve indoor air quality; increase awareness of alerts and adaptation; and provide measures for those working or living outdoors. Reducing emissions, conversely, lowers everyone's need to adapt, and protects those who cannot adapt. Equitably protecting human health from air pollution under climate change requires both mitigation and adaptation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Estados Unidos , Modelos Teóricos , Poluição do Ar/análise , Material Particulado/análise , Mudança Climática , Poluentes Atmosféricos/análise
3.
Environ Pollut ; 279: 116882, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756244

RESUMO

In the past decade, particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has reached unprecedented levels in China and posed a significant threat to public health. Exploring the long-term trajectory of the PM2.5 attributable health burden and corresponding disparities across populations in China yields insights for policymakers regarding the effectiveness of efforts to reduce air pollution exposure. Therefore, we examine how the magnitude and equity of the PM2.5-related public health burden has changed nationally, and between provinces, as economic growth and pollution levels varied during 2005-2017. We derive long-term PM2.5 exposures in China from satellite-based observations and chemical transport models, and estimate attributable premature mortality using the Global Exposure Mortality Model (GEMM). We characterize national and interprovincial inequality in health outcomes using environmental Lorenz curves and Gini coefficients over the study period. PM2.5 exposure is linked to 1.8 (95% CI: 1.6, 2.0) million premature deaths over China in 2017, increasing by 31% from 2005. Approximately 70% of PM2.5 attributable deaths were caused by stroke and IHD (ischemic heart disease), though COPD (chronic obstructive pulmonary disease) and LRI (lower respiratory infection) disproportionately affected poorer provinces. While most economic gains and PM2.5-related deaths were concentrated in a few provinces, both gains and deaths became more equitably distributed across provinces over time. As a nation, however, trends toward equality were more recent and less clear cut across causes of death. The rise in premature mortality is due primarily to population growth and baseline risks of stroke and IHD. This rising health burden could be alleviated through policies to prevent pollution, exposure, and disease. More targeted programs may be warranted for poorer provinces with a disproportionate share of PM2.5-related premature deaths due to COPD and LRI.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China/epidemiologia , Exposição Ambiental , Mortalidade Prematura , Material Particulado/análise
4.
Environ Health Perspect ; 128(11): 115001, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170741

RESUMO

BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745.


Assuntos
Poluição do Ar , COVID-19 , Coronavirus , Síndrome Respiratória Aguda Grave , Mudança Climática , Surtos de Doenças , Estudos Epidemiológicos , Humanos , SARS-CoV-2
5.
J Air Waste Manag Assoc ; 70(11): 1121-1135, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931377

RESUMO

On-road freight is a significant source of air pollutant and greenhouse gas emissions. The resulting economic damages can cross borders through processes of atmospheric fate and transport, regardless of whether that freight serves local or regional demand. Understanding patterns of freight demand and atmospheric processes can thus inform inter-jurisdictional efforts to mitigate multipollutant damages. We quantify how different freight trips across 49 census divisions in the Province of Ontario, Canada create an economic burden on downwind US receptors. We apply an integrated modeling approach combining a travel demand model, a mobile emissions simulator, and marginal damages from emissions. Economic damages include the increased risk of premature death from PM2.5 related to primary PM2.5 (represented by damages from inert primary PM2.5), NOX, SO2, and NH3, and the global effects of climate change from greenhouse gases (CO2, CH4, N2O). Over 90% of the $1.4 billion (2010USD) in transboundary air pollutant damages at US receptors result from regional freight demand across Ontario in 2012. A single major freight corridor, the ON-401 expressway, contributes more than half of all damages. Most of these damages impact the states situated to the south and east of the province. Mean estimates of annual damages range from millions to tens of millions (2010USD) across major eastern metropolitan areas including New York, Boston, Philadelphia, and D.C. Most of these damages result from NOX, which constitutes 95% of inorganic PM2.5-related pollutant emissions by mass. Thus, targeting NOx from freight movements along the ON-401 expressway could avoid millions to tens of millions of damages annually in eastern US cities. These results indicate that local green freight policies may be unable to address the environmental burden at cross-border receptors. Cooperation is needed among local, provincial, and federal governments to encourage policies targeting the most harmful emissions along routes servicing regional freight demands. Implications: On-road freight movement in Ontario can yield billions of dollars in annual economic damages to US residents through its effects on air pollution and climate change. We use an integrated modeling approach combining an on-road freight travel demand, mobile emissions, and marginal damages of emissions to quantify and study these economic damages. Regional freight contributes approximately 90% of damages, with one major freight corridor, the ON-401 expressway, contributing 59%. Most damages derive from emissions of NOx and amount to millions to tens of millions of dollars in annual damages across major Eastern US cities. Thus, targeting NOx from freight movements along the ON-401 expressway could avoid millions of damages annually in eastern US cities.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Material Particulado/análise , Meios de Transporte , Emissões de Veículos/análise , Cidades , Monitoramento Ambiental , Internacionalidade , Ontário , Estados Unidos
6.
Environ Sci Technol ; 53(3): 1098-1108, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624913

RESUMO

Climate policy can mitigate health risks attributed to intensifying air pollution under climate change. However, few studies quantify risks of illness and death, examine their contribution to climate policy benefits, or assess their robustness in light of natural climate variability. We employ an integrated modeling framework of the economy, climate, air quality, and human health to quantify the effect of natural variability on U.S. air pollution impacts under future climate and two global policies (2 and 2.5 °C stabilization scenarios) using 150 year ensemble simulations for each scenario in 2050 and 2100. Climate change yields annual premature deaths related to fine particulate matter and ozone (95CI: 25 000-120 000), heart attacks (900-9400), and lost work days (3.6M-4.9M) in 2100. It raises air pollution health risks by 20%, while policies avert these outcomes by 40-50% in 2050 and 70-88% in 2100. Natural variability introduces "climate noise", yielding some annual estimates with negative cobenefits, and others that reach 100% of annual policy costs. This "noise" is three times the magnitude of uncertainty (95CI) in health and economic responses in 2050. Averaging five annual simulations reduces this factor to two, which is still substantially larger than health-related uncertainty. This study quantifies the potential for inaccuracy in climate impacts projected using too few annual simulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mudança Climática , Humanos , Modelos Teóricos , Material Particulado , Incerteza
7.
Environ Sci Technol ; 51(4): 1953-1961, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28075579

RESUMO

Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.


Assuntos
Renda , Ozônio , Humanos , Modelos Teóricos , Pobreza , Fatores Socioeconômicos , Estados Unidos
8.
Environ Res Lett ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38605885

RESUMO

Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2°C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission 'Managing the health effects of climate change' through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

9.
J Air Waste Manag Assoc ; 66(10): 988-1002, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27216236

RESUMO

UNLABELLED: To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. IMPLICATIONS: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Carbono/análise , Política Ambiental/legislação & jurisprudência , Ozônio/análise , Material Particulado/análise , Monitoramento Ambiental , Gases/análise , Efeito Estufa/legislação & jurisprudência , Humanos , Modelos Teóricos , Estados Unidos
10.
Environ Sci Technol ; 49(13): 7580-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26053628

RESUMO

We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.


Assuntos
Poluição do Ar/efeitos adversos , Política Ambiental , Modelos Teóricos , Saúde Pública , Poluição do Ar/análise , Mudança Climática , Política Ambiental/economia , Política Ambiental/tendências , Previsões , Efeito Estufa , Ozônio/análise , Material Particulado/análise , Estados Unidos
11.
J Air Waste Manag Assoc ; 65(1): 74-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25946960

RESUMO

Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, whereas many studies of the cost of greenhouse gas mitigation model the macroeconomic welfare impacts of mitigation, most studies of air quality co-benefits do not. We employ a U.S. computable general equilibrium economic model previously linked to an air quality modeling system and enhance it to represent the economy-wide welfare impacts of fine particulate matter. We present a first application of this method to explore the efficiency and distributional implications of a Clean Energy Standard (CES) and a Cap and Trade (CAT) program that both reduce CO2emissions by 10% in 2030 relative to 2006. We find that co-benefits from fine particulate matter reduction (median $6; $2 to $10/tCO2) completely offset policy costs by 110% (40% to 190%), transforming the net welfare impact of the CAT into a gain of $1 (-$5 to $7) billion 2005$. For the CES, the corresponding co-benefit (median $8; $3 to $14/tCO2) is a smaller fraction (median 5%; 2% to 9%) of its higher policy cost. The eastern United States garners 78% and 71% of co-benefits for the CES and CAT, respectively. By representing the effects of pollution-related morbidities and mortalities as an impact to labor and the demand for health services, we find that the welfare impact per unit of reduced pollution varies by region. These interregional differences can enhance the preference of some regions, such as Texas, for a CAT over a CES, or switch the calculation of which policy yields higher co-benefits, compared with an approach that uses one valuation for all regions. This framework could be applied to quantify consistent air quality impacts of other pricing instruments, subnational trading programs, or green tax swaps.


Assuntos
Poluição do Ar/economia , Poluição do Ar/legislação & jurisprudência , Aquecimento Global/legislação & jurisprudência , Modelos Econômicos , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Clima , Aquecimento Global/prevenção & controle , Humanos , Material Particulado/economia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...