Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecol Evol ; 11(19): 13001-13013, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646448

RESUMO

Statistical models built using different data sources and methods can exhibit conflicting patterns. We used the northern stock of black sea bass (Centropristis striata) as a case study to assess the impacts of using different fisheries data sources and laboratory-derived physiological metrics in the development of thermal habitat models for marine fishes. We constructed thermal habitat models using generalized additive models (GAMs) based on various fisheries datasets as input, including the NOAA Northeast Fisheries Science Center (NEFSC) bottom trawl surveys, various inshore fisheries-independent trawl surveys (state waters), NEFSC fisheries-dependent observer data, and laboratory-based physiological metrics. We compared each model's GAM response curve and coupled them to historical ocean conditions in the U.S. Northeast Shelf using bias-corrected ocean temperature output from a regional ocean model. Thermal habitat models based on shelf-wide data (NEFSC fisheries-dependent observer data and fisheries-independent spring and fall surveys) explained the most variation in black sea bass presence/absence data at ~15% deviance explained. Models based on a narrower range of sampled thermal habitat from inshore survey data in the Northeast Area Monitoring and Assessment Program (NEAMAP) and the geographically isolated Long Island Sound data performed poorly. All models had similar lower thermal limits around 8.5℃, but thermal optima, when present, ranged from 16.7 to 24.8℃. The GAMs could reliably predict habitat from years excluded from model training, but due to strong seasonal temperature fluctuations in the region, could not be used to predict habitat in seasons excluded from training. We conclude that survey data source can greatly impact development and interpretation of thermal habitat models for marine fishes. We suggest that model development be based on data sources that sample the widest range of ocean temperature and physical habitat throughout multiple seasons when possible, and encourage thorough consideration of how data gaps may influence model uncertainty.

3.
Sci Rep ; 11(1): 8850, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893380

RESUMO

It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species' current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° to 29.7 °C and depths between 0 and 105.0 m. The calculated core bathythermal range consisted of SSTs between 15.0° and 28.0 °C and depths between 8.0 and 92.0 m, with the highest probability of presence occurred in regions with SST between 17.7° and 25.3 °C and at depths between 26.1 and 74.2 m. This model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.


Assuntos
Mudança Climática , Ecossistema , Tartarugas , Migração Animal , Animais , Oceano Atlântico , Temperatura
4.
Sci Rep ; 9(1): 8861, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222177

RESUMO

Sea turtle eggs are heavily influenced by the environment in which they incubate, including effects on hatching success and hatchling viability (hatchling production). It is crucial to understand how the hatchling production of sea turtles is influenced by local climate and how potential changes in climate may impact future hatchling production. Generalized Additive Models were used to determine the relationship of six climatic variables at different temporal scales on loggerhead turtle (Caretta caretta) hatchling production at seventeen nesting beaches in Bahia, Espirito Santo, and Rio de Janeiro, Brazil. Using extreme and conservative climate change scenarios throughout the 21st century, potential impacts on future hatching success (the number of hatched eggs in a nest) were predicted using the climatic variable(s) that best described hatchling production at each nesting beach. Air temperature and precipitation were found to be the main drivers of hatchling production throughout Brazil. CMIP5 climate projections are for a warming of air temperature at all sites throughout the 21st century, while projections for precipitation vary regionally. The more tropical nesting beaches in Brazil, such as those in Bahia, are projected to experience declines in hatchling production, while the more temperate nesting beaches, such as those in Rio de Janeiro, are projected to experience increases in hatchling production by the end of the 21st century.

5.
Glob Chang Biol ; 24(1): 117-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28731569

RESUMO

Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience.


Assuntos
Mudança Climática , Peixes , Oceanos e Mares , Animais , Ecossistema , Comportamento Predatório/fisiologia
6.
Sci Rep ; 7(1): 6264, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740241

RESUMO

Calanus finmarchicus is vital to pelagic ecosystems in the North Atlantic Ocean. Previous studies suggest the species is vulnerable to the effects of global warming, particularly on the Northeast U.S. Shelf, which is in the southern portion of its range. In this study, we evaluate an ensemble of six different downscaled climate models and a high-resolution global climate model, and create a generalized additive model (GAM) to examine how future changes in temperature and salinity could affect the distribution and density of C. finmarchicus. By 2081-2100, we project average C. finmarchicus density will decrease by as much as 50% under a high greenhouse gas emissions scenario. These decreases are particularly pronounced in the spring and summer in the Gulf of Maine and Georges Bank. When compared to a high-resolution global climate model, the ensemble showed a more uniform change throughout the Northeast U.S. Shelf, while the high-resolution model showed larger decreases in the Northeast Channel, Shelf Break, and Central Gulf of Maine. C. finmarchicus is an important link between primary production and higher trophic levels, and the decrease projected here could be detrimental to the North Atlantic Right Whale and a host of important fishery species.


Assuntos
Distribuição Animal , Mudança Climática , Copépodes/fisiologia , Animais , Ecossistema
7.
Glob Chang Biol ; 23(11): 4556-4568, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28378354

RESUMO

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.


Assuntos
Tartarugas/crescimento & desenvolvimento , Animais , Oceano Atlântico , Tamanho Corporal , Ecologia , Temperatura
8.
Geohealth ; 1(7): 278-296, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32158993

RESUMO

Illness caused by pathogenic strains of Vibrio bacteria incurs significant economic and health care costs in many areas around the world. In the Chesapeake Bay, the two most problematic species are V. vulnificus and V. parahaemolyticus, which cause infection both from exposure to contaminated water and consumption of contaminated seafood. We used existing Vibrio habitat models, four global climate models, and a recently developed statistical downscaling framework to project the spatiotemporal probability of occurrence of V. vulnificus and V. cholerae in the estuarine environment, and the mean concentration of V. parahaemolyticus in oysters in the Chesapeake Bay by the end of the 21st century. Results showed substantial future increases in season length and spatial habitat for V. vulnificus and V. parahaemolyticus, while projected increase in V. cholerae habitat was less marked and more spatially heterogeneous. Our findings underscore the need for spatially variable inputs into models of climate impacts on Vibrios in estuarine environments. Overall, economic costs associated with Vibrios in the Chesapeake Bay, such as incidence of illness and management measures on the shellfish industry, may increase under climate change, with implications for recreational and commercial uses of the ecosystem.

9.
PLoS One ; 11(6): e0157170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27332550

RESUMO

Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population.


Assuntos
Cruzamento , Mudança Climática , Ecossistema , Comportamento Alimentar/fisiologia , Tartarugas/fisiologia , Animais , Feminino , Geografia , Grécia , Região do Mediterrâneo , Mar Mediterrâneo , Modelos Teóricos , Chuva , Temperatura
10.
Sci Rep ; 6: 28785, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27352849

RESUMO

The contribution of climate change to shifts in a species' geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.


Assuntos
Mudança Climática , Spheniscidae/fisiologia , Distribuição Animal , Animais , Regiões Antárticas , Cruzamento , Dinâmica Populacional
11.
PLoS One ; 11(2): e0149220, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901435

RESUMO

Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.


Assuntos
Organismos Aquáticos/fisiologia , Biomassa , Mudança Climática , Modelos Biológicos , Animais , Meio-Oeste dos Estados Unidos
12.
J Geophys Res Oceans ; 121(12): 8635-8669, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32818130

RESUMO

The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

13.
Sci Rep ; 5: 16789, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26572897

RESUMO

The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.


Assuntos
Mudança Climática , Temperatura , Tartarugas/fisiologia , Animais , Região do Caribe , Oceano Índico , Oceano Pacífico , Tartarugas/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento
14.
J Geophys Res Oceans ; 120(9): 6508-6541, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-27668139

RESUMO

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.

15.
Nat Commun ; 5: 4318, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25000452

RESUMO

Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM). Favorable conditions for phytoplankton included increased winter ice extent and duration, reduced spring/summer winds, and increased water column stability via enhanced salinity-driven density gradients. Years of positive chl-a anomalies are associated with the initiation of a robust krill cohort the following summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling. Projected climate change in this region may have a significant, negative impact on phytoplankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic ecosystem.


Assuntos
Cadeia Alimentar , Estações do Ano , Animais , Regiões Antárticas , Bactérias , Clorofila/análise , Euphausiacea , Fitoplâncton , Spheniscidae
16.
PLoS One ; 8(12): e81097, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339901

RESUMO

A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.


Assuntos
Clima , Comportamento de Nidação , Répteis , Migração Animal , Animais , Oceano Atlântico , Feminino , Masculino , Modelos Estatísticos , Análise de Sobrevida
17.
PLoS One ; 7(5): e37602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649544

RESUMO

Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.


Assuntos
Animais Recém-Nascidos/fisiologia , Mudança Climática/mortalidade , El Niño Oscilação Sul , Modelos Teóricos , Reprodução/fisiologia , Tartarugas/fisiologia , Animais , Tamanho da Ninhada/fisiologia , Costa Rica , Umidade , Mortalidade , Óvulo/fisiologia , Oceano Pacífico , Análise de Regressão , Temperatura
18.
Conserv Biol ; 22(5): 1216-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18637915

RESUMO

Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.


Assuntos
Pesqueiros/métodos , Modelos Teóricos , Comportamento Predatório , Tartarugas/fisiologia , Animais , Simulação por Computador , Costa Rica , Humanos , Mortalidade , Óvulo , Dinâmica Populacional
19.
Ecology ; 89(5): 1414-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18543633

RESUMO

Nesting populations of leatherback turtles (Dermochelys coriacea) in the Atlantic and western Indian Oceans are increasing or stable while those in the Pacific are declining. It has been suggested that leatherbacks in the eastern Pacific may be resource limited due to environmental variability derived from the El Niño Southern Oscillation (ENSO), but this has yet to be tested. Here we explored bottom-up forcing and the responding reproductive output of nesting leatherbacks worldwide. We achieved this through an extensive review of leatherback nesting and migration data and by analyzing the spatial, temporal, and quantitative nature of resources as indicated by net primary production at post-nesting female migration and foraging areas. Leatherbacks in the eastern Pacific were the smallest in body size and had the lowest reproductive output due to less productive and inconsistent resources within their migration and foraging areas. This derived from natural interannual and multidecadal climate variability together with an influence of anthropogenic climate warming that is possibly affecting these natural cycles. The reproductive output of leatherbacks in the Atlantic and western Indian Oceans was nearly twice that of turtles in the eastern Pacific. The inconsistent nature of the Pacific Ocean may also render western Pacific leatherbacks susceptible to a more variable reproductive output; however, it appears that egg harvesting on nesting beaches is their major threat. We suggest that the eastern Pacific leatherback population is more sensitive to anthropogenic mortality due to recruitment rates that are lower and more variable, thus accounting for much of the population differences compared to Atlantic and western Indian turtles.


Assuntos
Conservação dos Recursos Naturais , Efeito Estufa , Tartarugas/fisiologia , Migração Animal , Animais , Oceano Atlântico , Simulação por Computador , Ecossistema , Feminino , Comportamento de Nidação , Oceano Pacífico , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...