Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(25): 6480-6485, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28566499

RESUMO

Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.

3.
Proc Natl Acad Sci U S A ; 113(3): 532-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729862

RESUMO

The pigeonhole principle: "If you put three pigeons in two pigeonholes, at least two of the pigeons end up in the same hole," is an obvious yet fundamental principle of nature as it captures the very essence of counting. Here however we show that in quantum mechanics this is not true! We find instances when three quantum particles are put in two boxes, yet no two particles are in the same box. Furthermore, we show that the above "quantum pigeonhole principle" is only one of a host of related quantum effects, and points to a very interesting structure of quantum mechanics that was hitherto unnoticed. Our results shed new light on the very notions of separability and correlations in quantum mechanics and on the nature of interactions. It also presents a new role for entanglement, complementary to the usual one. Finally, interferometric experiments that illustrate our effects are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA