Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 76-80, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38133800

RESUMO

Water-in-salt electrolytes have attracted considerable interest in the past decade for advanced lithium-ion batteries, possessing important advantages over the non-aqueous electrolytes currently in use. A battery with a LiTFSI-water electrolyte was demonstrated in which an operating window of 3 V is made possible by a solid-electrolyte interface. Viscosity is an important property for such electrolytes, because high viscosity is normally associated with low ionic conductivity. Here, we investigate shear and longitudinal viscosities using shear stress and compressional longitudinal stress measurements as functions of frequency and concentration. We find that both viscosities are frequency-dependent and exhibit almost identical frequency and concentration dependences in the high-concentration region. A comparison to quasielastic neutron scattering experiments suggests that both are governed by structural relaxation of the TFSI- network. Thus, LiFTSI-water electrolytes appear to be an unusual case of a non-Newtonian fluid, where shear and longitudinal viscosities are determined by the same relaxation mechanism.

2.
J Chem Phys ; 158(12): 124502, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003746

RESUMO

A new class of electrolytes have been reported, hybridizing aqueous with non-aqueous solvents, which combines non-flammability and non-toxicity characteristics of aqueous electrolytes with the superior electrochemical stability of non-aqueous systems. Here, we report measurements of the structure of an electrolyte composed of an equal-mass mixture of 21 m LiTFSI-water and 9 m LiTFSI-dimethyl carbonate using high-energy x-ray diffraction and polarized neutron diffraction with isotope substitution. Neutron structure factors from partially and fully deuterated samples exhibit peaks at low scattering vector Q that we ascribe to long-range correlations involving both solvent molecules and TFSI- anions. We compare both sets of measurements with results of molecular dynamics simulations based on a polarizable force field. The structures derived from simulations are generally in agreement with those measured, except that neutron structure factors predicted for two partially deuterated samples show very intense scattering increasing up to the low-Q limit of simulation, indicating a partial segregation between the two solvents not observed in experimental measurements.

3.
Phys Chem Chem Phys ; 24(18): 10727-10736, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451439

RESUMO

We report a systematic diffraction study of two "water-in-salt" electrolytes and a "water-in-bisalt" electrolyte combining high-energy X-ray diffraction (HEXRD) with polarized and unpolarized neutron diffraction (ND) on both H2O and D2O solutions. The measurements provide three independent combinations of correlations between the different pairs of atom types that reveal the short- and intermediate-range order in considerable detail. The ND interference functions show pronounced peaks around a scattering vector Q ∼ 0.5 Å-1 that change dramatically with composition, indicating significant rearrangements of the water network on a length scale around 12 Å. The experimental results are compared with two sets of Molecular Dynamics (MD) simulations, one including polarization effects and the other based on a non-polarizable force field. The two simulations reproduce the general shapes of the experimental structure factors and their changes with concentration, but differ in many detailed respects, suggesting ways in which their force fields might be modified to better represent the actual systems.

4.
J Phys Chem Lett ; 11(17): 7279-7284, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787289

RESUMO

"Water-in-salt" (WIS) and "water-in-bisalt" (WIBS) electrolytes have recently been developed for Li-ion batteries, combining the safety and environmental friendliness of aqueous electrolytes with a larger operating window made possible by a solid-electrolyte interphase. We report quasielastic neutron scattering (QENS) measurements on solutions of a WIS electrolyte at two concentrations, 13.9 and 21 m (molal) lithium bis(trifluoromethane)sulfonimide LiTFSI in H2O/D2O and a WIBS electrolyte at (21 m LiTFSI + 7 m lithium triflate (LiOTf)) in H2O/D2O. The data were Fourier transformed to obtain experimental intermediate scattering functions (ISFs) and compared with corresponding quantities obtained from molecular dynamics (MD) simulations. Both QENS and MD ISFs could be fitted well by a single stretched exponential function to obtain apparent translational diffusion coefficients for the water molecules. The QENS values agree well with the MD simulations for the 13.9 and 21 m solutions, but MD simulations predict a slower relaxation of water compared to QENS for the WIBS electrolyte. Comparison of the incoherent and coherent scattering reveals much faster water dynamics compared with structural relaxation of the ionic framework, consistent with the nanodomain picture where the lithium diffusion occurs through the tortuous water domain around the slower relaxing ionic matrix, leading to highly non-Gaussian water motion.

5.
J Phys Chem B ; 123(50): 10807-10813, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31769976

RESUMO

Neutron diffraction with isotopic substitution (NDIS) experiments were done on both natural abundance potassium and isotopically labeled 41KCl heavy water solutions to characterize the solvent structuring around the potassium ion in water. Preliminary measurements suggested that the literature value for the coherent neutron scattering length (2.69 fm) for 41K was significantly in error. This value was remeasured using a neutron powder diffractometer and found to be 2.40 fm. This revision increases significantly the contrast between the natural abundance K and 41K by about 30% (from 1.0 to 1.3 fm). The experimentally determined structure factor of the potassium ion was then compared to that calculated from molecular dynamics (MD) simulations. Previous neutron scattering measurements of potassium gave a solvation number of 5.5 (see below). In this study, the NDIS and MD results are in good agreement and allowed us to derive a coordination number of 6.1 for water molecules and 0.8 for chloride ions around each K+ ion in 4 molal aqueous KCl solution.


Assuntos
Simulação de Dinâmica Molecular , Difração de Nêutrons , Cloreto de Potássio/química , Água/química , Conformação Molecular , Soluções
6.
Eur Phys J E Soft Matter ; 41(8): 94, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30128834

RESUMO

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

7.
J Phys Chem B ; 122(21): 5308-5315, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29092394

RESUMO

Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.

8.
Nanoscale ; 9(30): 10579-10584, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28715033

RESUMO

We present a simple preparation route to obtain a nanoscale metastable hard-magnetic ε-Fe2O3 phase, using silica coated ß-FeOOH nanorods as a precursor and an annealing process. The synthesized ε-Fe2O3 nanoparticles exhibit large coercivity (HC ∼ 20 kOe at 300 K and HC ∼ 1.6 kOe at 400 K), confirming their high potential for practical applications.

10.
J Phys Chem Lett ; 8(4): 715-719, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28103664

RESUMO

The influence of water on the relaxation of a prototype ionic liquid (IL) C8mimBF4 is examined in the IL-rich regime combining quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The QENS and MD simulations results for relaxation of IL and the equimolar mixture with water probed by the dynamics of the C8mim hydrogen atoms in the time range of 2 ps to 1 ns are in excellent agreement. The QENS data show that translational relaxation increases by a factor of 7 on the addition of water, while rotational relaxation involving multiple processes fitted by a KWW function with low ß values is speeded up by a factor of 3 on the time scale of QENS measurements. The MD simulations show that the cation diffusion coefficient, inverse viscosity, and ionic conductivity increase on the addition of water, consistent with the very small change in ionicity. The difficulties in obtaining rotational and translational diffusion coefficients from fits to QENS experiments of pure ILs and IL-water mixtures are discussed.

11.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3621-3626, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27217073

RESUMO

We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Materiais Revestidos Biocompatíveis/química , Compostos Férricos/química , Nanopartículas/química , Difusão Dinâmica da Luz , Hidrodinâmica , Concentração de Íons de Hidrogênio , Magnetometria , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Espectroscopia por Absorção de Raios X , Difração de Raios X
12.
Biochim Biophys Acta Gen Subj ; 1861(6): 1578-1586, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27919801

RESUMO

BACKGROUND: This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA. METHODS: SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS. RESULTS: The SFP-FA have zeta potential below -6mW and stable hydrodynamic diameter close to 100nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22-27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells. CONCLUSIONS: The present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis. GENERAL SIGNIFICANCE: Composition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Clatrina/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos , Endocitose , Ácido Fólico/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias do Colo do Útero/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cavéolas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Endossomos/metabolismo , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Lisossomos/metabolismo , Células MCF-7 , Nanopartículas de Magnetita/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência por Excitação Multifotônica , Espectroscopia de Perda de Energia de Elétrons , Neoplasias do Colo do Útero/tratamento farmacológico
13.
Phys Chem Chem Phys ; 18(34): 23474-81, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27225393

RESUMO

The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy X-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4-water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4(-) for complexing the imidazolium rings was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4(-) anions to the imidazolium ring is not significantly changed by the addition of water. A complementary packing of water and imidazolium around BF4(-) was found. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.

14.
Sci Rep ; 5: 15054, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503506

RESUMO

Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

15.
Biopolymers ; 99(10): 739-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828616

RESUMO

The structure of aqueous solutions of methyl ß-D-ribofuranoside was investigated by coupling molecular dynamics (MD) simulations and neutron scattering measurements with isotopic substitution. Using a sample of the sugar isotopically-labeled at a single unique position, neutron scattering structure factors and radial distribution functions can be compared with MD simulations constrained to different conformations to determine which conformer best fits the experimental results. Three different simulations were performed with the methyl ether group of the sugar unconstrained and constrained in each of its staggered orientations. The results of the unconstrained simulation showed that the methyl ester group occupied predominantly the 300° position, which is in agreement with the diffraction experimental results. This result suggests that the molecular mechanics force field used in the simulation adequately describes the conformation of the 1-methyl ether group in the methyl ß-D-ribofuranoside.


Assuntos
Simulação de Dinâmica Molecular , Difração de Nêutrons , Modelos Moleculares , Nêutrons , Ribose , Soluções , Água/química
16.
Faraday Discuss ; 160: 161-70; discussion 207-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23795499

RESUMO

The method of intramolecular coordination number concentration invariance (ICNCI) is used on neutron diffraction with isotopic substitution (NDIS) measurements of aqueous solutions to separate the intra- and intermolecular contributions to the total intensities. Molecular dynamics simulations of corresponding systems are then used to interpret the ICNCI function. It is found that the ICNCI function (characterized by two concentration measurements) is sensitive specifically to intermolecular association and that the molecular dynamics can successfully replicate this function in the cases of the neutral species xylose and pyridine in aqueous solution. ICNCI functions can also be obtained by the addition of a cosolute (such as adding GdmCl or Gdm2SO4 to pyridine solutions). In that case it is found that molecular dynamics can replicate the ICNCI function for the addition of GdmCl to pyridine, but fails to successfully replicate the same function for the addition of Gdm2SO4. This result implies that the interaction of pyridine with guanidinium sulfate is over-estimated in these MD simulations, and is of significant importance to the use of molecular dynamics simulations to elucidate an atomic level understanding of the Hofmeister series.


Assuntos
Água/química , Íons , Simulação de Dinâmica Molecular , Soluções
17.
J Phys Chem B ; 116(38): 11701-11, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22897449

RESUMO

Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 m solution of α-D-glucopyranose, at a caffeine concentration of 0.083 m, a single caffeine in a 3 m solution of ß-D-glucopyranose, and a single caffeine molecule in a 1.08 m solution of sucrose (table sugar). Parallel nuclear magnetic resonance titration experiments were carried out on the same solutions under similar conditions. Consistent with previous thermodynamic experiments, the sugars were found to have an affinity for the caffeine molecules in both the simulations and experiments, and the binding in these complexes occurs by face-to-face stacking of the hydrophobic triad of protons of the pyranose rings against the caffeine face, rather than by hydrogen bonding. For the disaccharide, the binding occurs via stacking of the glucose ring against the caffeine, with a lesser affinity for the fructose observed. These findings are consistent with the association being driven by hydrophobic hydration and are similar to the previously observed binding of glucose rings to various other planar molecules, including indole, serotonin, and phenol.


Assuntos
Cafeína/química , Carboidratos/química , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Soluções , Água/química
18.
Eur Biophys J ; 41(4): 369-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22124617

RESUMO

Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.


Assuntos
Solventes/química , Água/química , Glucose/química , Glucose/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas/química , Proteínas/metabolismo , Propriedades de Superfície
19.
Langmuir ; 28(2): 1496-505, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22172203

RESUMO

We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.


Assuntos
Coloides , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Ácido Fólico/química , Magnetismo , Nanopartículas , Neoplasias/metabolismo , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Transmissão , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061601, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367958

RESUMO

A study of the complex drying dynamics of polymeric mixtures with optical microscopy and gravimetric measurement is presented. Droplet formation is observed, followed by a collapse that leads to the residual craters in the dried film. The process is followed in situ under well-defined temperature and hygrometric conditions to determine the origin and nature of these droplets and craters. The drying process is usually completed within 1 h. The observations are explained using a simple diffusion model based on experimental results collected from mass and optical measurements as well as Raman confocal microspectrometry. Although the specific polymeric mixtures used here are of interest to the cosmetic industry, the general conclusions reached can apply to other polymeric aqueous solutions with applications to commercial and artistic painting.


Assuntos
Álcoois/química , Polímeros/química , Água/química , Coloides/química , Cosméticos/química , Humanos , Cinética , Modelos Teóricos , Física/métodos , Pele , Soluções , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...