Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764354

RESUMO

The tumor suppressor p14/19ARF regulates ribosomal RNA (rRNA) synthesis by controlling the nucleolar localization of Transcription Termination Factor 1 (TTF1). However, the role played by TTF1 in regulating the rRNA genes and in potentially controlling growth has remained unclear. We now show that TTF1 expression regulates cell growth by determining the cellular complement of ribosomes. Unexpectedly, it achieves this by acting as a "roadblock" to synthesis of the noncoding LncRNA and pRNA that we show are generated from the "Spacer Promoter" duplications present upstream of the 47S pre-rRNA promoter on the mouse and human ribosomal RNA genes. Unexpectedly, the endogenous generation of these noncoding RNAs does not induce CpG methylation or gene silencing. Rather, it acts in cis to suppress 47S preinitiation complex formation and hence de novo pre-rRNA synthesis by a mechanism reminiscent of promoter interference or occlusion. Taken together, our data delineate a pathway from p19ARF to cell growth suppression via the regulation of ribosome biogenesis by noncoding RNAs and validate a key cellular growth law in mammalian cells.

2.
NAR Cancer ; 2(4): zcaa032, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33196044

RESUMO

In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI-Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI-Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.

3.
Chromosome Res ; 27(1-2): 31-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617621

RESUMO

The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.


Assuntos
Cromatina/genética , Genes de RNAr , Animais , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
4.
Front Genet ; 9: 635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619462

RESUMO

Rett syndrome (RTT) is a severe and rare neurological disorder that is caused by mutations in the X-linked MECP2 (methyl CpG-binding protein 2) gene. MeCP2 protein is an important epigenetic factor in the brain and in neurons. In Mecp2-deficient neurons, nucleoli structures are compromised. Nucleoli are sites of active ribosomal RNA (rRNA) transcription and maturation, a process mainly controlled by nucleolin and mechanistic target of rapamycin (mTOR)-P70S6K signaling. Currently, it is unclear how nucleolin-rRNA-mTOR-P70S6K signaling from RTT cellular model systems translates into human RTT brain. Here, we studied the components of nucleolin-rRNA-mTOR-P70S6K signaling in the brain of RTT patients with common T158M and R255X mutations. Immunohistochemical examination of T158M brain showed disturbed nucleolin subcellular localization, which was absent in Mecp2-deficient homozygous male or heterozygote female mice, compared to wild type (WT). We confirmed by Western blot analysis that nucleolin protein levels are altered in RTT brain, but not in Mecp2-deficient mice. Further, we studied the expression of rRNA transcripts in Mecp2-deficient mice and RTT patients, as downstream molecules that are controlled by nucleolin. By data mining of published ChIP-seq studies, we showed MeCP2-binding at the multi-copy rRNA genes in the mouse brain, suggesting that rRNA might be a direct MeCP2 target gene. Additionally, we observed compromised mTOR-P70S6K signaling in the human RTT brain, a molecular pathway that is upstream of rRNA-nucleolin molecular conduits. RTT patients showed significantly higher phosphorylation of active mTORC1 or mTORC2 complexes compared to age- and sex-matched controls. Correlational analysis of mTORC1/2-P70S6K signaling pathway identified multiple points of deviation from the control tissues that may result in abnormal ribosome biogenesis in RTT brain. To our knowledge, this is the first report of deregulated nucleolin-rRNA-mTOR-P70S6K signaling in the human RTT brain. Our results provide important insight toward understanding the molecular properties of human RTT brain.

5.
G3 (Bethesda) ; 8(1): 303-314, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29158335

RESUMO

The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein-DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein-DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus) and human (Homo sapiens) ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a "Spacer Promoter" and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.


Assuntos
Elementos Facilitadores Genéticos , Genes de RNAr , Genoma , Regiões Promotoras Genéticas , RNA Ribossômico/genética , Animais , Sequência de Bases , Imunoprecipitação da Cromatina , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
6.
PLoS Genet ; 13(7): e1006899, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715449

RESUMO

Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin and place the Enhancer Boundary Complex as the likely entry point for chromatin remodelling complexes.


Assuntos
Genes de RNAr , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Polimerase I/metabolismo , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Feminino , Deleção de Genes , Inativação Gênica , Loci Gênicos , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Gravidez , RNA Polimerase I/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...