Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2512-2533, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38602861

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Doença de Parkinson , Pramipexol , Ratos Sprague-Dawley , Pramipexol/administração & dosagem , Pramipexol/farmacocinética , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Masculino , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacocinética , Hidrogéis/química
2.
Eur J Pharm Biopharm ; 199: 114304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663522

RESUMO

Carbidopa and levodopa remain the established therapeutic standard for managing Parkinson's disease. Nevertheless, their oral administration is hindered by rapid enzymatic degradation and gastrointestinal issues, limiting their efficacy, and necessitating alternative delivery methods. This work presents a novel strategy employing dissolving microarray patches (MAPs) loaded with carbidopa and levodopa, formulated with Tween® 80 to improve their transdermal delivery. The fabricated MAPs demonstrated an acceptable mechanical strength, resisting pressures equivalent to manual human thumb application (32 N) onto the skin. Additionally, these MAPs exhibited an insertion depth of up to 650 µm into excised neonatal porcine skin. Ex vivo dermatokinetic studies could achieve delivery efficiencies of approximately 53.35 % for levodopa and 40.14 % for carbidopa over 24 h, demonstrating their significant potential in drug delivery. Biocompatibility assessments conducted on human dermal fibroblast cells corroborated acceptable cytocompatibility, confirming the suitability of these MAPs for dermal application. In conclusion, dissolving MAPs incorporating carbidopa and levodopa represent a promising alternative for improving the therapeutic management of Parkinson's disease.


Assuntos
Administração Cutânea , Antiparkinsonianos , Carbidopa , Levodopa , Doença de Parkinson , Carbidopa/administração & dosagem , Levodopa/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Suínos , Humanos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Adesivo Transdérmico , Pele/metabolismo , Pele/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Absorção Cutânea/efeitos dos fármacos , Combinação de Medicamentos
3.
J Control Release ; 369: 363-375, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38554770

RESUMO

The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.

4.
J Control Release ; 366: 548-566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211640

RESUMO

The lymphatic system possesses the main viral replication sites in the body following viral infection. Unfortunately, current antiretroviral agents penetrate the lymph nodes insufficiently when administered orally and, therefore, cannot access the lymphatic system sufficiently to interrupt this viral replication. For this reason, novel drug delivery systems aimed at enhancing the lymphatic uptake of antiretroviral drugs are highly desirable. Dissolving polymeric microarray patches (MAPs) may help to target the lymph intradermally. MAPs are intradermal drug delivery systems used to deliver many types of compounds. The present work describes a novel work investigating the lymphatic uptake of two anti-HIV drugs: cabotegravir (CAB) and rilpivirine (RPV) when delivered intradermally using dissolving MAPs containing nanocrystals of both drugs. Maps were formulated using NCs obtained by solvent-free milling technique. The polymers used to prepare the NCs of both drugs were PVA 10 Kda and PVP 58 Kda. Both NCs were submitted to the lyophilization process and reconstituted with deionized water to form the first layer of drug casting. Backing layers were developed for short application times and effective skin deposition. In vivo biodistribution profiles of RPV and CAB after MAP skin application were investigated and compared with the commercial intramuscular injection using rats. After a single application of RPV MAPs, a higher concentration of RPV was delivered to the axillary lymph nodes (AL) (Cmax 2466 ng/g - Tmax 3 days) when compared with RPV IM injection (18 ng/g - Tmax 1 day), while CAB MAPs delivered slightly lower amounts of drug to the AL (5808 ng/g in 3 days) when compared with CAB IM injection (9225 ng/g in 10 days). However, CAB MAPs delivered 7726 ng/g (Tmax 7 days) to the external lumbar lymph nodes, which was statistically equivalent to IM delivery (Cmax 8282 ng/g - Tmax 7 days). This work provides strong evidence that MAPs were able to enhance the delivery of CAB and RPV to the lymphatic system compared to the IM delivery route.


Assuntos
Dicetopiperazinas , Infecções por HIV , Piridonas , Rilpivirina , Animais , Ratos , Preparações Farmacêuticas , Distribuição Tecidual , Antirretrovirais , Polímeros
5.
Int J Pharm ; 652: 123847, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266945

RESUMO

Microneedles have garnered considerable attention over the years as a versatile pharmaceutical platform that could be leveraged to deliver drugs into and across the skin. In the current work, poly (N-isopropylacrylamide) (PNIPAm) is synthesized and characterized as a novel material for the development of a physiologically responsive microneedle-based drug delivery system. Typically, this polymer transitions reversibly between a swell state at lower temperatures and a more hydrophobic state at higher temperatures, enabling precise drug release. This study demonstrates that dissolving microneedles patches made from PNIPAm, incorporating BIS-PNIPAm, a crosslinked polymer variant, exhibit enhanced mechanical properties, evident from a smaller height reduction in microneedle (∼10 %). Although microneedles using PNIPAm alone were achievable, it displayed poor mechanical strength, requiring the inclusion of additional polymeric excipients like PVA to enhance mechanical properties. In addition, the incorporation of a thermoresponsive polymer did not have a significant (p > 0.05) impact on the insertion properties of the needles as all formulations inserted to a similar depth of 500 µm into ex vivo skin. Furthering this, the needles were loaded with a model payload, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was monitored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈200 µm. Also, it was revealed that crosslinked-PNIPAm (Bis-PNIPAm) formulations exhibited notable skin accumulationof the dye only after 4 h, independent of the excipient matrix used. This phenomenon was absent in non-crosslinked PNIPAm formulations, indicating a deposit formation in Bis-PNIPAm microneedle formulation. Collectively, this proof-of-concept study has advanced our understanding on the possibility to use PNIPAm for dissolving microneedle fabrication which could be harnessed for the deposition of nanoparticles into the dermis, for extended drug release within the skin.


Assuntos
Polímeros , Pele , Polímeros/química , Pele/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Agulhas , Administração Cutânea , Microinjeções
6.
Pharmaceutics ; 16(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276512

RESUMO

Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug.

7.
Drug Deliv Transl Res ; 14(1): 208-222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37477867

RESUMO

Research on the use of microarray patches (MAPs) has progressed at an unprecedented rate over the years, leading to the development of many novel drug delivery systems. As the technology approaches patients, there are several key aspects that ought to be addressed in order to facilitate the smooth translation of MAPs from bench to bedside. One integral factor includes the choice of devices and packaging for the storage of MAPs. In the current work, a slide-and-seal box, MAP-box, was developed for the storage of dissolving MAPs, using fused-deposition modelling. The device has been designed to act as a pill-box for MAPs not only to provide protection for MAPs from the environment, but also to improve patient's adherence to treatment. The overall design of the MAP-box was simple, yet offers the capability of sealing and protecting dissolving MAPs up to 30 days. Donepezil HCl was formulated into a dissolvable MAP, which was used to treat dementia related to Alzheimer's disease. This compound was used as a model formulation to evaluate the utility of the 3D printed MAP-box when placed under three storage conditions: 5 °C and ambient humidity, 25 °C and 65% relative humidity and 40 °C and 75% relative humidity. It was shown that the slide-and-seal box was able to confer protection to MAPs for up to 30 days under accelerated stability study conditions as the drug loading, mechanical properties and insertion properties of MAPs remained unaffected when compared to the unpackaged MAPs stored under these same parameters. These preliminary data provide evidence that the MAP-box prototype may be of great utility for the storage of single or multiple MAPs. Nevertheless, future work will be needed to evaluate their patient usability and its application to different types of MAP systems to fully validate the overall robustness of the prototype.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Humanos , Administração Cutânea , Adesivo Transdérmico , Impressão Tridimensional
8.
Carbohydr Polym ; 320: 121194, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659788

RESUMO

Carvedilol, a ß-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 µm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.


Assuntos
Ciclodextrinas , Insuficiência Cardíaca , Suínos , Animais , Ratos , Carvedilol , Administração Oral , Disponibilidade Biológica
9.
Int J Pharm ; 644: 123292, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37553057

RESUMO

Skin and soft tissue infections (SSTIs) arise from microbial ingress into the skin. In this study, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (polyAMPS), which has been reported to exhibit antimicrobial properties was synthesised for the manufacture of microarray patches (MAPs). The free acid and sodium salt of polyAMPS with controlled molar masses and narrow dispersity were synthesised via reversible addition - fragmentation chain-transfer (RAFT) polymerisation reaction with a monomer conversion of over 99%, as determined by 1H NMR. The polymers were shown to be biocompatible when evaluated using a fibroblast dermal cell line while agar plating assay using cultures of C. albican demonstrated that the acid form of polyAMPS exhibited antimicrobial inhibition, which is potentiated in the presence of antimicrobial agents. The synthesised polymers were then used to fabricate dissolving MAPs, which were loaded with either ITRA or levofloxacin (LEV). The MAPs displayed acceptable mechanical resistance and punctured ex vivo skin to a depth of 600 µm. Skin deposition studies revealed that the MAPs were able to administer up to âˆ¼ 1.9 mg of LEV (delivery efficiency: 94.7%) and âˆ¼ 0.2 mg of ITRA (delivery efficiency: 45.9%), respectively. Collectively, the synthesis and development of this novel pharmaceutical system may offer a strategy to manage SSTIs.


Assuntos
Anti-Infecciosos , Ácidos Sulfônicos , Antifúngicos/metabolismo , Antibacterianos/metabolismo , Pele/metabolismo , Administração Cutânea , Polímeros/química , Agulhas , Sistemas de Liberação de Medicamentos
10.
Adv Drug Deliv Rev ; 201: 115055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597586

RESUMO

The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Humanos , Polímeros/farmacologia , Agulhas , Administração Cutânea
11.
J Control Release ; 361: 385-401, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562555

RESUMO

Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.


Assuntos
Antimaláricos , Malária Vivax , Animais , Camundongos , Ratos , Primaquina/uso terapêutico , Primaquina/farmacologia , Cloroquina , Plasmodium vivax , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia
12.
J Control Release ; 359: 97-115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263545

RESUMO

Since the first patent for micro array patches (MAPs) was filed in the 1970s, research on utilising MAPs as a drug delivery system has progressed significantly, evidenced by the transition from the simple 'poke and patch' of solid MAPs to the development of bio responsive systems such as hydrogel-forming and dissolving MAPs. In addition to the extensive research on MAPs for improving transdermal drug delivery, there is a growing interest in using these devices to manage infectious diseases. This is due to the minimally invasive nature of this drug delivery platform which enable patients to self-administer therapeutics without the aid of healthcare professionals. This review aims to provide a critical analysis on the potential utility of MAPs in managing infectious diseases which are still endemic at a global scale. The range of diseases covered in this review include tuberculosis, skin infections, malaria, methicillin-resistant Staphylococcus aureus infections and Covid-19. These diseases exert a considerable socioeconomic burden at a global scale with their impact magnified in low- and middle-income countries (LMICs). Due to the painless and minimally invasive nature of MAPs application, this technology also provides an efficient solution not only for the delivery of therapeutics but also for the administration of vaccine and prophylactic agents that could be used in preventing the spread and outbreak of emerging infections. Furthermore, the ability of MAPs to sample and collect dermal interstitial fluid that is rich in disease-related biomarkers could also open the avenue for MAPs to be utilised as a minimally invasive biosensor for the diagnosis of infectious diseases. The efficacy of MAPs along with the current limitations of such strategies to prevent and treat these infections will be discussed. Lastly, the clinical and translational hurdles associated with MAP technologies will also be critically discussed.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Vacinas , Humanos , Administração Cutânea , Sistemas de Liberação de Medicamentos
13.
Biomater Adv ; 153: 213526, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348183

RESUMO

Schizophrenia is a severe chronic mental illness characterised by impaired emotional and cognitive functioning. To treat this condition, antipsychotics are available in limited dosage forms, mainly oral and injectable formulations. Although injectable antipsychotics were designed to enhance adherence, they are invasive, painful and require a healthcare professional to be administered. To overcome such administration issues, extensive research has been focused on developing transdermal antipsychotic formulations. In this work, three microneedle (MN) systems were developed to deliver fluphenazine (FLU) systemically. A decanoic prodrug of FLU called fluphenazine decanoate (FLUD) was used in two of the MN formulations due to its high lipophilicity. FLU-D was loaded into dissolving MNs and nanoemulsion (NE)-loaded MNs. The parent drug FLU was loaded into poly(lactic-co-glycolic acid) (PLGA)-tipped MNs. All MN systems were characterised and evaluated in vitro and in vivo. The in vivo evaluation of the three developed MN systems showed their ability to deliver FLU into the systemic circulation, as the Cmax of FLU-D dissolving MNs was 36.11 ± 12.37 ng/ml. However, the Cmax of FLU-D NE loaded dissolving MNs was 12.92 ± 6.3 ng/ml and for FLU-PLGA tipped MNs was 21.57 ± 2.45 ng/ml. Compared to an intramuscular (IM) injection of FLU-D in sesame oil, the relative bioavailabilities were 26.96 %, 21.73 % and 42.45 % for FLU-D dissolving MNs, FLU-D NE dissolving MNs and FLU-PLGA tipped MNs, respectively. FLU plasma levels were maintained above the minimum human therapeutic limits for a week. Consequently, these various MN formulations are considered to be a viable options for the transdermal delivery of fluphenazine and its prodrug. The three MN systems developed offer patients a user-friendly, painless, and convenient long-acting delivery method for FLU. Reducing dosing frequency and using less invasive drug administration methods can enhance adherence and foster positive therapeutic outcomes. This study demonstrates the capability and adaptability of MNs technology to transport hydrophobic molecules from the skin to the systemic circulation.


Assuntos
Antipsicóticos , Pró-Fármacos , Esquizofrenia , Humanos , Flufenazina , Esquizofrenia/tratamento farmacológico
14.
ACS Appl Mater Interfaces ; 15(26): 31300-31319, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37349320

RESUMO

Transdermal drug delivery is an alternative route of administration that offers avoidance of the associated drawbacks of orally and parenterally administered hydrophobics. However, owing to the extremely specific set of physicochemical characteristics required for passive transdermal drug permeation, the development of marketed transdermal products containing poorly soluble drugs has been severely limited. Microarray patches (MAPs) are a type of transdermal patch that differ from the traditional patch design due to the presence of tiny, micron-sized needles that permit enhanced drug permeation on their application surface. To date, MAPs have predominantly been used to deliver hydrophilic compounds. However, this work challenges this trend and focuses on the use of MAPs, in combination with commonly utilized solubility-enhancing techniques, to deliver the hydrophobic drug olanzapine (OLP) across the skin. Specifically, cyclodextrin (CD) complexation and particle size reduction were employed in tandem with hydrogel-forming and dissolving MAPs, respectively. In vivo experimentation using a female Sprague-Dawley rat model confirmed the successful delivery of OLP from hydrogel-forming MAPs (Cmax = 611.13 ± 153.34 ng/mL, Tmax = 2 h) and dissolving MAPs (Cmax = 690.56 ± 161.33 ng/mL, Tmax = 2 h) in a manner similar to that of oral therapy in terms of the rate and extent of drug absorption, as well as overall drug exposure and bioavailability. This work is the first reported use of polymeric MAPs in combination with the solubility-enhancing techniques of CD complexation and particle size reduction to successfully deliver the poorly soluble drug OLP via the transdermal route. Accordingly, this paper provides significant evidence to support an expansion of the library of molecules amenable to MAP-mediated drug delivery to include those that exhibit poor aqueous solubility.


Assuntos
Polímeros , Pele , Ratos , Animais , Feminino , Olanzapina , Ratos Sprague-Dawley , Administração Cutânea , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis , Agulhas
15.
Int J Pharm ; 641: 123081, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230371

RESUMO

Seasonal influenza virus infections cause a substantial number of deaths each year. While zanamivir (ZAN) is efficacious against oseltamivir-resistant influenza strains, the efficacy of the drug is limited by its route of administration, oral inhalation. Herein, we present the development of a hydrogel-forming microneedle array (MA) in combination with ZAN reservoirs for treating seasonal influenza. The MA was fabricated from Gantrez® S-97 crosslinked with PEG 10,000. Various reservoir formulations included ZAN hydrate, ZAN hydrochloric acid (HCl), CarraDres™, gelatin, trehalose, and/or alginate. In vitro permeation studies with a lyophilized reservoir consisting of ZAN HCl, gelatin, and trehalose resulted in rapid and high delivery of up to 33 mg of ZAN across the skin with delivery efficiency of up to ≈75% by 24 h. Pharmacokinetics studies in rats and pigs demonstrated that a single administration of a MA in combination with a CarraDres™ ZAN HCl reservoir offered a simple and minimally invasive delivery of ZAN into the systemic circulation. In pigs, efficacious plasma and lung steady-state levels of ∼120 ng/mL were reached within 2 h and sustained between 50 and 250 ng/mL over 5 days. MA-enabled delivery of ZAN could enable a larger number of patients to be reached during an influenza outbreak.


Assuntos
Influenza Humana , Zanamivir , Ratos , Animais , Suínos , Humanos , Zanamivir/uso terapêutico , Antivirais , Gelatina , Trealose
16.
Int J Pharm ; 640: 123005, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142137

RESUMO

HIV/AIDS remains a major global public health issue. While antiretroviral therapy is effective at reducing the viral load in the blood, up to 50% of those with HIV suffer from some degree of HIV-associated neurocognitive disorder, due to the presence of the blood-brain barrier restricting drugs from crossing into the central nervous system and treating the viral reservoir there. One way to circumvent this is the nose-to-brain pathway. This pathway can also be accessed via a facial intradermal injection. Certain parameters can increase delivery via this route, including using nanoparticles with a positive zeta potential and an effective diameter of 200 nm or less. Microneedle arrays offer a minimally invasive, pain-free alternative to traditional hypodermic injections. This study shows the formulation of nanocrystals of both rilpivirine (RPV) and cabotegravir, followed by incorporation into separate microneedle delivery systems for application to either side of the face. Following an in vivo study in rats, delivery to the brain was seen for both drugs. For RPV, a Cmax was seen at 21 days of 619.17 ± 73.32 ng/g, above that of recognised plasma IC90 levels, and potentially therapeutically relevant levels were maintained for 28 days. For CAB, a Cmax was seen at 28 days of 478.31 ± 320.86 ng/g, and while below recognised 4IC90 levels, does indicate that therapeutically relevant levels could be achieved by manipulating final microaaray patch size in humans.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Nanopartículas , Humanos , Ratos , Animais , Infecções por HIV/tratamento farmacológico , Rilpivirina/uso terapêutico , Transtornos Neurocognitivos/tratamento farmacológico , Piridonas
17.
Pharmaceutics ; 15(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36839730

RESUMO

Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.

18.
Adv Mater ; 35(18): e2210034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36739591

RESUMO

Driven by regulatory authorities and the ever-growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof-of-concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water-rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near-infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.


Assuntos
Epiderme , Pele , Animais , Camundongos , Pele/diagnóstico por imagem , Ultrassonografia/métodos , Silicones/química
19.
AAPS PharmSciTech ; 23(7): 273, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195761

RESUMO

Analytical method validation is a vital element of drug formulation and delivery studies. Here, high-performance liquid chromatography in conjunction with UV detection (HPLC-UV) has been used to produce a straightforward, quick, yet sensitive analytical approach to quantify carvedilol (CAR). A C18 column was used to isolate the analyte from the mixture by isocratic elution with a mobile phase comprising a mixture of 0.1% v/v trifluoroacetic acid in water and acetonitrile in a ratio of 65:35 v/v at a flow rate of 0.6 mL min-1. Linearity was observed for CAR concentrations within the range of 1.5-50 µg mL-1 (R2 = 0.999) in phosphate buffer saline and within the range of 0.2-6.2 µg mL-1 (R2 = 0.9999) in methanol. The International Council on Harmonization (ICH) requirements were followed throughout the validation of the isocratic approach, rendering it specific, accurate, and precise. Moreover, robustness tests indicated that the method remained selective and specific despite small deliberate changes to environmental and operational factors. An efficient extraction procedure was also developed to extract and quantify CAR from excised neonatal porcine skin, resulting in recovery rates ranging from 95 to 97%. The methods reported here have been successfully utilised to evaluate CAR permeation, both transdermally and intradermally following application of a dissolving microarray patch (MAP) to excised neonatal porcine skin.


Assuntos
Metanol , Água , Acetonitrilas , Animais , Carvedilol , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Fosfatos , Suínos , Ácido Trifluoracético
20.
Int J Pharm ; 628: 122234, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36191817

RESUMO

Microneedles have the clinical advantage of being able to deliver complex drugs across the skin in a convenient and comfortable manner yet haven't successfully transitioned to medical practice. Diabetes mellitus is a complicated disease, which is commonly treated with multiple daily insulin injections, contributing to poor treatment adherence. Firstly, this review determines the clinical prospect of microneedles, alongside considerations that ought to be addressed before microneedle technology can be translated from bench to bedside. Thereafter, we use diabetes as a case study to consider how microneedle-based-technology may be successfully harnessed. Here, publications referring to insulin microneedles were evaluated to understand whether insertion efficiency, angle of insertion, successful dose delivery, dose adjustability, material biocompatibility and therapeutic stability are being addressed in early stage research. Moreover, over 3,000 patents from 1970 to 2019 were reviewed with the search term '"microneedle" AND "insulin"' to understand the current status of the field. In conclusion, the reporting of early stage microneedle research demonstrated a lack of consistency relating to the translational factors addressed. Additionally, a more rational design, based on a patient-centred approach is required before microneedle-based delivery systems can be used to revolutionise the lives of people living with diabetes following regulatory approval.


Assuntos
Diabetes Mellitus , Insulina , Humanos , Insulina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Agulhas , Diabetes Mellitus/tratamento farmacológico , Preparações Farmacêuticas , Microinjeções , Administração Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...