Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 10(1): 109, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039954

RESUMO

Microcombs-optical frequency combs generated in microresonators-have advanced tremendously in the past decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics. Crucially, microcombs promise fully integrated miniaturized optical systems with unprecedented reductions in cost, size, weight, and power. However, the use of bulk free-space and fiber-optic components to process microcombs has restricted form factors to the table-top. Taking microcomb-based optical frequency synthesis around 1550 nm as our target application, here, we address this challenge by proposing an integrated photonics interposer architecture to replace discrete components by collecting, routing, and interfacing octave-wide microcomb-based optical signals between photonic chiplets and heterogeneously integrated devices. Experimentally, we confirm the requisite performance of the individual passive elements of the proposed interposer-octave-wide dichroics, multimode interferometers, and tunable ring filters, and implement the octave-spanning spectral filtering of a microcomb, central to the interposer, using silicon nitride photonics. Moreover, we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling, indicating a path towards future system-level consolidation. Finally, we numerically confirm the feasibility of operating the proposed interposer synthesizer as a fully assembled system. Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems and can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.

2.
Nat Mater ; 17(9): 820-826, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891887

RESUMO

Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm-2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

3.
IEEE Trans Nanobioscience ; 13(1): 19-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24594511

RESUMO

We attempt to examine the potential of silicon nanowire memristors in the field of nanobiosensing. The memristive devices are crystalline Silicon (Si) Nanowires (NWs) with Nickel Silicide (NiSi) terminals. The nanowires are fabricated on a Silicon-on-Insulator (SOI) wafer by an Ebeam Lithography Technique (EBL) process that allows high resolution at the nanoscale. A Deep Reactive Ion Etching (DRIE) technique is used to define free-standing nanowires. The close alignment between Silicon (Si) and Nickel-Silicide (NiSi) terminals forms a Schottky-barrier at their junction. The memristive effect of the fabricated devices matches well with the memristor theory. An equivalent circuit reproducing the memristive effect in current-voltage (I-V) characteristics of our silicon nanowires is presented too. The memristive silicon nanowire devices are then functionalized with anti-human VEGF (Vascular Endothelial Growth Factor) antibody and I-V characteristics are examined for the nanowires prior to and after protein functionalization. The uptake of bio-molecules linked to the surface of the memristive NWs is confirmed by the increased voltage gap in the hysteresis curve. The effects of varying humidity conditions on the conductivity of bio-modified memristive silicon nanowires are deeply investigated.


Assuntos
Anticorpos/química , Técnicas Biossensoriais , Nanofios/química , Níquel/química , Compostos de Silício/química , Silício/química , Anticorpos/imunologia , Humanos , Umidade , Microscopia Eletrônica de Varredura , Modelos Teóricos , Nanofios/ultraestrutura , Imagem Óptica , Fator A de Crescimento do Endotélio Vascular/imunologia
4.
Philos Trans A Math Phys Eng Sci ; 372(2012): 20130102, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24567471

RESUMO

Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...