Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 44(7): 1-28, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33649994

RESUMO

The Riardo basin hosts groundwater exploited for the production of high quality, naturally sparkling, bottled water (e.g., Ferrarelle water), and circulating in a system constituted by highly fractured Mesozoic carbonates, overlain by more impervious volcanic rocks of the Roccamonfina complex. The two formations are locally in hydraulic connection and dislocated by deep-rooted faults. The study aimed at elucidating groundwater origin and circulation, using isotopic tracers (δ18O, δ2H, δ11B and 87Sr/86Sr) coupled to groundwater dating (Tritium, CFCs and SF6). Besides recharge by local precipitation over the Riardo hydrogeological basin, stable isotope ratios in water indicated an extra-basin recharge, likely from the elevated surrounding carbonate reliefs (e.g., Maggiore and Matese Mts.). The mineralization process, promoted by the deep CO2 flux, controls the B and Sr contents. However, their isotopic ratios did not allow discriminating between circulation in the volcanic and in the carbonate aquifers, as in the latter the isotopic composition differed from the original marine signature. Groundwater model ages ranged from ~ 30 years for the volcanic endmember to > 70 years for the deep, mineralized end-member, with longer circuits recharged at higher elevations. Overall, the results of this study were particularly relevant for mineral water exploitation. A recharge from outside the hydrogeological basin could be evidenced, especially for the more mineralized and valuable groundwater, and an active recent recharge was detected for the whole Riardo system. Both findings will contribute to the refinement of the hydrogeological model and water budget, and to a sustainable development of the resource.


Assuntos
Água Subterrânea , Águas Minerais , Carbonatos , Monitoramento Ambiental/métodos , Água Subterrânea/química , Movimentos da Água
2.
Sci Total Environ ; 782: 146800, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838379

RESUMO

The EU Nitrate Directive has been ruling for almost 30 years, nevertheless nitrate concentration in the Lombardy Plain did not decrease. Together with failures of management implementation, a possible cause for such field observations is that management actions were taken without adequately considering the actual hydrogeological dynamics. To consider this aspect, the paper presents a groundwater flow and transport numerical model of a specific area of the Lombardy Plain. The aim of this model is to demonstrate how modelling, as a management tool, can be useful in the governance process. The groundwater model, using well-known MODFLOW-MT3D codes, is based on existing hydrogeological information, while a nitrogen mass balance has been performed at municipal scale to determine the agricultural N surplus to the subsurface. The model adequately reproduces head levels and nitrate concentrations in observation wells for a 10-year simulation period, showing that 4.5% of the N annual input remains stored in the system. The model indicates the efficiency of rivers and springs to export N out from the system at an estimated rate of 77.5% of the annual N inputs. Back to governance, the model shows that management data at municipal level (e.g. irrigation rates, groundwater withdrawal, N net recharge) provide a satisfactory scale for successfully reproducing nitrate evolution. Hence those variables that can be object of debate during a governance process can be treated as input data to the numerical model. Therefore, backcasting exercises can be conducted to check whether the model outcome fits with the expected results of specific management actions. The model highlights how the N mass balance evolves, providing clues on which factors can be managed to reduce nitrate concentrations and meet the Directive's requirements. Numerical groundwater models, as an option to address water management issues, ultimately contribute to solve the information and capacity governance gaps.

3.
Sci Total Environ ; 758: 143646, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257069

RESUMO

Understanding the factors that control As concentrations in groundwater is vital for supplying safe groundwater in regions with As-polluted aquifers. Despite much research, mainly addressing Holocene aquifers hosting young (<100 yrs) groundwater, the source, transport, and fate of As in Pleistocene aquifers with fossil (>12,000 yrs) groundwaters are not yet fully understood and so are assessed here through an evaluation of the redox properties of the system in a type locality, the Po Plain (Italy). Analyses of redox-sensitive species and major ions on 22 groundwater samples from the Pleistocene arsenic-affected aquifer in the Po Plain shows that groundwater concentrations of As are controlled by the simultaneous operation of several terminal electron accepters. Organic matter, present as peat, is abundant in the aquifer, allowing groundwater to reach a quasi-steady-state of highly reducing conditions close to thermodynamic equilibrium. In this system, simultaneous reduction of Fe-oxide and sulfate results in low concentrations of As (median 7 µg/L) whereas As reaches higher concentrations (median of 82 µg/L) during simultaneous methanogenesis and Fe-reduction. The position of well-screens is an additional controlling factor on groundwater As: short screens that overlap confining aquitards generate higher As concentrations than long screens placed away from them. A conceptual model for groundwater As, applicable worldwide in other Pleistocene aquifers with reducible Fe-oxides and abundant organic matter is proposed: As may have two concentration peaks, the first after prolonged Fe-oxide reduction and until sulfate reduction takes place, the second during simultaneous Fe-reduction and methanogenesis.

4.
Ambio ; 49(2): 504-516, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31115872

RESUMO

Despite the European Nitrate Directive (ND) being issued almost 30 years ago, groundwater nitrate contamination is still a serious threat to ecosystems and human health. In one of the areas most affected by nitrates, the Lombardy Plain (Italy), the effectiveness of the ND and the capacity of governance to support its application correctly was assessed using a socio-hydrogeological approach. Nitrate trends over 11 years show that most regions present steady or increasing concentrations, highlighting how contamination can affect previously impaired situations and supposedly resistant and resilient aquifers. Stakeholder network analysis reveals that the governance framework does not support knowledge dissemination and changes in farmers' attitudes, hindering water quality improvements. Nitrogen input needs to be reduced and manure relocation monitored. The local governance scale has a key role in enhancing ND dissemination. Reports to the EU Commission should integrate multi- or interdisciplinary evaluation of trends, including governance dynamics, alongside hydrochemical information.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Ecossistema , Monitoramento Ambiental , Humanos , Itália , Nitratos
5.
Sci Total Environ ; 672: 342-356, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959301

RESUMO

For several hundred years, farming in the Po Plain of Italy (46,000 km2, 20 million inhabitants) has been supported by intensive surface irrigation with lake and river water. Despite the longevity of irrigation, its effects on the quality and quantity of groundwater is poorly known and so is investigated here through seasonal measurements of hydraulic heads and water quality in groundwaters, rivers, lake, springs and rainwaters. In the north of the study region, an unconfined coarse-grained alluvial aquifer, infiltration of surface irrigation water, sourced from the Oglio River and low in NO3, contributes much to aquifer recharge (up to 88%, as evidenced by a δ2H-Cl/Br mixing model) and has positive effects on groundwater quality by diluting high concentrations of NO3 (decrease by 17% between June and September). This recharge also helps to maintain numerous local springs that form important local micro-environments. Any increase in water-use efficiency in irrigation will reduce this recharge, imperil the spring environments, and lessen the dilution of NO3 leading to increasing NO3 concentrations in groundwater. These findings can be extended by analogy to the entire Po Plain region and other surface-water-irrigated systems worldwide where inefficient irrigation methods are used and similar hydrogeological features occur.

6.
Sci Total Environ ; 578: 502-512, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836337

RESUMO

In aquifers 160 to 260m deep that used for public water-supply in an area ~150km2 around the town of Cremona, in the Po Plain of Northern Italy, concentrations of arsenic (As) are increasing with time in some wells. The increase is due to drawdown of As-polluted groundwater (As ≤144µg/L) from overlying aquifers at depths 65 to 150m deep in response to large-scale abstraction for public supply. The increase in As threatens drinking-water quality locally, and by inference does so across the entire Po Plain, where natural As-pollution of groundwater (As >10µg/L) is a basin-wide problem. Using new and legacy data for Cl/Br, δ18O/δ2H and other hydrochemical parameters with groundwater from 32 wells, 9 surface waters, a sewage outfall and rainwater, we show that the deep aquifer (160-260m below ground level), which is tapped widely for public water-supply, is partly recharged by seepage from overlying aquifers (65-150m below ground level). Groundwater quality in deep aquifers appears free of anthropogenic influences and typically <10µg/L of As. In contrast, shallow groundwater and surface water in some, not all, areas are affected by anthropogenic contamination and natural As-pollution (As >10µg/L). Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, which then locally infiltrate shallow aquifers under high channel-stages. Wastewater permeating shallow aquifers carries with it NO3 and SO4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so suppress the natural release of As to groundwater.


Assuntos
Arsênio/análise , Água Potável/análise , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Abastecimento de Água , Monitoramento Ambiental , Itália
7.
Environ Monit Assess ; 188(11): 605, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27709464

RESUMO

Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (Igeo), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.


Assuntos
Poluição Ambiental/análise , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Monitoramento Ambiental , Iraque
8.
Isotopes Environ Health Stud ; 52(4-5): 455-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999492

RESUMO

A one-year hydrochemical and isotopic monitoring was conducted at the Inle Lake, the second largest lake in Myanmar, also considering sediment samples. Lake waters are characterised by low electrical conductivities (236-489 µS/cm), neutral to alkaline pH (7.36-9.26), oxidising Eh (329-457 mV) and Ca-Mg-HCO3 facies. Stable isotopes indicate that lake waters are only slightly affected by evaporation, are fully flushed yearly and are not stratified. Carbonate equilibria dominate the lake water hydrochemistry. In summer, photosynthetic activity and temperature increase induce calcite precipitation, as testified by its high content in the sediments, up to 97 %, and by its isotopic composition. The short residence time and endogenic calcite precipitation likely prevent the accumulation of contaminants and nutrients in lake waters. This study suggests a high resilience of the system to anthropogenic disturbances and demonstrates the sediment potential for the reconstruction of the environmental evolution in time and for the anthropogenic impact assessment.


Assuntos
Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Lagos/análise , Lagos/química , Monitoramento Ambiental , Hidrologia , Mianmar , Movimentos da Água
9.
Environ Sci Technol ; 48(10): 5395-403, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24779916

RESUMO

An analysis of 70 wells that tap groundwater from depths of up to 260 m in and around the town of Cremona, N. Italy, shows that 50 of them contain more than 10 µg/L of arsenic. Concentrations of As >10 ppb are accompanied by concentrations of Fe ranging from <0.1 to 6 mg/L and high concentrations of NH4 and Mn (<19 and <1.3 mg/L, respectively). The associations suggest that the mechanism of mobilization of As is the reductive dissolution of Fe oxides driven by the degradation of peat, which is commonly found in the aquifer system. Groundwater in the aquifer has a component of downward flow via leakage through aquitards and flow through lateral discontinuities in them. Along these flow paths, As is released by reductive dissolution of Fe oxides in shallow and intermediate aquifers (0-85 m below surface), reaching up to 183 µg/L, and is attenuated (<95 µg/L) at greater depths (100-150 m). Coprecipitation in iron sulfides could play an important role in As attenuation at these depths. The lower As concentration (<37 µg/L) in the deepest aquifer (160-260 m) is less related to the As concentration of the overlying aquifers because the groundwater here has a component of upward flow.


Assuntos
Arsênio/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Geografia , Geologia , Hidrologia , Itália , Modelos Teóricos , Oxirredução
10.
Sci Total Environ ; 485-486: 681-692, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747259

RESUMO

We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters (from 2 to 17 µeq L(-1)) were greater than expected based on the low N inputs from wet deposition.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Clima , Poeira/análise , Ecossistema , Nepal , Ciclo do Nitrogênio , Chuva , Estações do Ano
11.
Environ Monit Assess ; 172(1-4): 605-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20300838

RESUMO

In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate (δ¹5N and δ¹8O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Senegal
12.
Isotopes Environ Health Stud ; 40(1): 35-44, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15085982

RESUMO

Research carried out in the last 40 years has shown the scientific importance of groundwater circulation both in the Northern Adriatic sea bed and within the uppermost sedimentary layers of the Venice lagoon and of the Venice plain. Hydrodynamic processes are strictly controlled by a well-cemented sedimentary horizon lying under and around Venice ('caranto'), which plays the role of regional aquitard. This layer was attributed to the subaerial cementation of the Flandrian (8-10 ka Before Present) sedimentary surface. The caranto is generalised as a continuum horizon, being an easy explanation for several environmental, hydrogeological and geotechnical problems, e.g., a base layer for landfills, a confining layer for deep aquifers and the best substratum for locating the oak wooden pile-dwelling needed to support the largest buildings. The preservation of the isotope signal within the deep aquifers and aquiclude system records the changes in surface and groundwater characteristics and suggests the present and past recharge regimes. In this region, the heavily perturbed hydrodynamic conditions do not allow for the use of isotopic signals to derive a correct reconstruction of the present recharge. The perturbations induced by the intensive anthropogenic activity force to follow climate evolution by considering deep groundwater and pore waters. In addition, the presence of carbonatic rocks inside terrigeneous sediments affects the reconstruction of the past. Results indicate that carbonatic rocks are created by seepage, through the sediments, of gaseous carbon compounds from decaying organic layers. The gas interactions with the intra-sedimentary saline and fresh waters produce CO2, inducing the cementation of the sediments.


Assuntos
Sedimentos Geológicos/química , Movimentos da Água , Cidades , Monitoramento Ambiental , Isótopos/análise , Itália , Porosidade , Água do Mar , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...