Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(2): 100603, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36714793

RESUMO

Background & Aims: Induction of potent, HBV-specific immune responses is crucial to control and finally cure HBV. The therapeutic hepatitis B vaccine TherVacB combines protein priming with a Modified Vaccinia virus Ankara (MVA)-vector boost to break immune tolerance in chronic HBV infection. Particulate protein and vector vaccine components, however, require a constant cooling chain for storage and transport, posing logistic and financial challenges to vaccine applications. We aimed to identify an optimal formulation to maintain stability and immunogenicity of the protein and vector components of the vaccine using a systematic approach. Methods: We used stabilizing amino acid (SAA)-based formulations to stabilize HBsAg and HBV core particles (HBcAg), and the MVA-vector. We then investigated the effect of lyophilization and short- and long-term high-temperature storage on their integrity. Immunogenicity and safety of the formulated vaccine was validated in HBV-naïve and adeno-associated virus (AAV)-HBV-infected mice. Results: In vitro analysis proved the vaccine's stability against thermal stress during lyophilization and the long-term stability of SAA-formulated HBsAg, HBcAg and MVA during thermal stress at 40 °C for 3 months and at 25 °C for 12 months. Vaccination of HBV-naïve and AAV-HBV-infected mice demonstrated that the stabilized vaccine was well tolerated and able to brake immune tolerance established in AAV-HBV mice as efficiently as vaccine components constantly stored at 4 °C/-80 °C. Even after long-term exposure to elevated temperatures, stabilized TherVacB induced high titre HBV-specific antibodies and strong CD8+ T-cell responses, resulting in anti-HBs seroconversion and strong suppression of the virus in HBV-replicating mice. Conclusion: SAA-formulation resulted in highly functional and thermostable HBsAg, HBcAg and MVA vaccine components. This will facilitate global vaccine application without the need for cooling chains and is important for the development of prophylactic as well as therapeutic vaccines supporting vaccination campaigns worldwide. Impact and implications: Therapeutic vaccination is a promising therapeutic option for chronic hepatitis B that may enable its cure. However, its application requires functional cooling chains during transport and storage that can hardly be guaranteed in many countries with high demand. In this study, the authors developed thermostable vaccine components that are well tolerated and that induce immune responses and control the virus in preclinical mouse models, even after long-term exposure to high surrounding temperatures. This will lower costs and ease application of a therapeutic vaccine and thus be beneficial for the many people affected by hepatitis B around the world.

2.
J Hepatol ; 78(4): 717-730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634821

RESUMO

BACKGROUND & AIMS: We recently developed a heterologous therapeutic vaccination scheme (TherVacB) comprising a particulate protein prime followed by a modified vaccinia-virus Ankara (MVA)-vector boost for the treatment of HBV. However, the key determinants required to overcome HBV-specific immune tolerance remain unclear. Herein, we aimed to study new combination adjuvants and unravel factors that are essential for the antiviral efficacy of TherVacB. METHODS: Recombinant hepatitis B surface and core antigen (HBsAg and HBcAg) particles were formulated with different liposome- or oil-in-water emulsion-based combination adjuvants containing saponin QS21 and monophosphoryl lipid A; these formulations were compared to STING-agonist c-di-AMP and conventional aluminium hydroxide formulations. Immunogenicity and the antiviral effects of protein antigen formulations and the MVA-vector boost within TherVacB were evaluated in adeno-associated virus-HBV-infected and HBV-transgenic mice. RESULTS: Combination adjuvant formulations preserved HBsAg and HBcAg integrity for ≥12 weeks, promoted human and mouse dendritic cell activation and, within TherVacB, elicited robust HBV-specific antibody and T-cell responses in wild-type and HBV-carrier mice. Combination adjuvants that prime a balanced HBV-specific type 1 and 2 T helper response induced high-titer anti-HBs antibodies, cytotoxic T-cell responses and long-term control of HBV. In the absence of an MVA-vector boost or following selective CD8 T-cell depletion, HBsAg still declined (mediated mainly by anti-HBs antibodies) but HBV replication was not controlled. Selective CD4 T-cell depletion during the priming phase of TherVacB resulted in a complete loss of vaccine-induced immune responses and its therapeutic antiviral effect in mice. CONCLUSIONS: Our results identify CD4 T-cell activation during the priming phase of TherVacB as a key determinant of HBV-specific antibody and CD8 T-cell responses. IMPACT AND IMPLICATIONS: Therapeutic vaccination is a potentially curative treatment option for chronic hepatitis B. However, it remains unclear which factors are essential for breaking immune tolerance in HBV carriers and determining successful outcomes. Our study provides the first direct evidence that efficient priming of HBV-specific CD4 T cells determines the success of therapeutic hepatitis B vaccination in two preclinical HBV-carrier mouse models. Applying an optimal formulation of HBV antigens that activates CD4 and CD8 T cells during prime immunization provided the foundation for an antiviral effect of therapeutic vaccination, while depletion of CD4 T cells led to a complete loss of vaccine-induced antiviral efficacy. Boosting CD8 T cells was important to finally control HBV in these mouse models. Our findings provide important insights into the rational design of therapeutic vaccines for the cure of chronic hepatitis B.


Assuntos
Vacinas contra Hepatite B , Hepatite B Crônica , Camundongos , Humanos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Linfócitos T CD4-Positivos , Imunização , Vacinação/métodos , Anticorpos Anti-Hepatite B , Linfócitos T CD8-Positivos , Camundongos Transgênicos , Adjuvantes Imunológicos , Antivirais
3.
Commun Biol ; 5(1): 1237, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371561

RESUMO

Coronavirus infections are a world-wide threat to human health. A promising strategy to develop a broadly active antiviral is the use of fusion proteins consisting of an antibody IgG Fc region and a human ACE2 domain to which the viral spike proteins bind. Here we create antiviral fusion proteins based on IgM scaffolds. The hexameric ACE2-IgM-Fc fusions can be efficiently produced in mammalian cells and they neutralize the infectious virus with picomolar affinity thus surpassing monomeric ACE2-IgM-Fc by up to 96-fold in potency. In addition, the ACE2-IgM fusion shows increased neutralization efficiency for the highly infectious SARS-CoV-2 omicron variant in comparison to prototypic SARS-CoV-2. Taken together, these multimeric IgM fusions proteins are a powerful weapon to fight coronavirus infections.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Peptidil Dipeptidase A , Ligação Proteica , Imunoglobulina M , Mamíferos
4.
Antiviral Res ; 196: 105197, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774603

RESUMO

SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais/síntese química , Tratamento Farmacológico da COVID-19 , Imunoglobulina G , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/uso terapêutico , Antivirais/uso terapêutico , Humanos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos
5.
Nat Commun ; 12(1): 6737, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795299

RESUMO

Antibodies bind antigens via flexible loops called complementarity-determining regions (CDRs). These are usually 6-20 residues long. However, some bovine antibodies have ultra-long CDRs comprising more than 50 residues organized in a stalk and a disulfide-rich knob. The design features of this structural unit and its influence on antibody stability remained enigmatic. Here, we show that the stalk length is critical for the folding and stability of antibodies with an ultra-long CDR and that the disulfide bonds in the knob do not contribute to stability; they are important for organizing the antigen-binding knob structure. The bovine ultra-long CDR can be integrated into human antibody scaffolds. Furthermore, mini-domains from de novo design can be reformatted as ultra-long CDRs to create unique antibody-based proteins neutralizing SARS-CoV-2 and the Alpha variant of concern with high efficiency. Our findings reveal basic design principles of antibody structure and open new avenues for protein engineering.


Assuntos
Regiões Determinantes de Complementaridade/genética , SARS-CoV-2/genética , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/genética , Bovinos
6.
Artigo em Inglês | MEDLINE | ID: mdl-31658963

RESUMO

Hepatitis B virus (HBV) is a major human pathogen, killing an estimated 887,000 people per year. Therefore, potentially curative therapies are of high importance. Following infection, HBV deposits a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that serves as a transcription template and is not affected by current therapies. HBV core protein allosteric modulators (CpAMs) prevent correct capsid assembly but may also affect early stages of HBV infection. In this study, we aimed to determine the antiviral efficacy of a novel, structurally distinct heteroaryldihydropyrimidine (HAP)-type CpAM, HAP_R01, and investigated whether and how HAP_R01 prevents the establishment of HBV infection. HAP_R01 shows a significant inhibition of cccDNA formation when applied during the first 48 h of HBV infection. Inhibiting cccDNA formation, however, requires >1-log10-higher concentrations than inhibition of the assembly of newly forming capsids (half-maximal effective concentration [EC50], 345 to 918 nM versus 26.8 to 43.5 nM, respectively). Biophysical studies using a new method to detect the incoming capsid in de novo infection revealed that HAP_R01 can physically change mature capsids of incoming virus particles and affect particle integrity. Treating purified HBV virions with HAP_R01 reduced their infectivity, highlighting the unique antiviral activity of CpAMs to target the capsid within mature HBV particles. Accordingly, HAP_R01 shows an additive antiviral effect in limiting de novo infection when combined with viral entry inhibitors. In summary, HAP_R01 perturbs capsid integrity of incoming virus particles and reduces their infectivity and thus inhibits cccDNA formation in addition to preventing HBV capsid assembly.


Assuntos
Capsídeo/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/metabolismo , Proteínas do Core Viral/metabolismo , Regulação Alostérica/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Southern Blotting , Capsídeo/química , DNA Circular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Microscopia Eletrônica de Transmissão , Pirimidinas/química , Proteínas do Core Viral/genética
7.
Mol Ther ; 27(5): 947-959, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30852138

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a promising novel therapeutic approach for cancer but also for chronic infection. We have developed a fully human, second-generation CAR directed against the envelope protein of hepatitis B virus on the surface of infected cells (S-CAR). The S-CAR contains a human B cell-derived single-chain antibody fragment and human immunoglobulin G (IgG) spacer, CD28- and CD3-signaling domains that may be immunogenic in mice. Because immunosuppression will worsen the clinical course of chronic hepatitis B, we aimed at developing a preclinical mouse model that is immunocompetent and mimics chronic hepatitis B but nevertheless allows evaluating efficacy and safety of a fully human CAR. The S-CAR grafted on T cells triggered antibody responses in immunocompetent animals, and a co-expressed human-derived safeguard, the truncated epidermal growth factor receptor (EGFRt), even induced B and T cell responses, both limiting the survival of S-CAR-grafted T cells. Total body irradiation and transfer of T cells expressing an analogous, signaling-deficient S-CAR decoy and the safeguard induced immune tolerance toward the human-derived structures. S-CAR T cells transferred after immune recovery persisted and showed long-lasting antiviral effector function. The approach we describe herein will enable preclinical studies of efficacy and safety of fully human CARs in the context of a functional immune system.


Assuntos
Hepatite B/terapia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Modelos Animais de Doenças , Hepatite B/genética , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Imunocompetência/efeitos dos fármacos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Camundongos , Receptores de Antígenos Quiméricos/administração & dosagem , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas do Envelope Viral/antagonistas & inibidores
8.
J Biol Chem ; 289(36): 25250-61, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053410

RESUMO

The molecular chaperone Hsc70 assists in the folding of non-native proteins together with its J domain- and BAG domain-containing cofactors. In Caenorhabditis elegans, two BAG domain-containing proteins can be identified, one of them being UNC-23, whose mutation induces severe motility dysfunctions. Using reporter strains, we find that the full-length UNC-23, in contrast to C-terminal fragments, localizes specifically to the muscular attachment sites. C-terminal fragments of UNC-23 instead perform all Hsc70-related functions, like ATPase stimulation and regulation of folding activity, albeit with lower affinity than BAG-1. Interestingly, overexpression of CFP-Hsc70 can induce muscular defects in wild-type nematodes that phenocopy the knockout of its cofactor UNC-23. Strikingly, the motility dysfunction in the unc-23 mutated strain can be cured specifically by down-regulation of the antagonistic Hsc70 cochaperone DNJ-13, implying that the severe phenotype is caused by misregulation of the Hsc70 cycle. These findings point out that the balanced action of cofactors in the ATP-driven cycle of Hsc70 is crucial for the contribution of Hsc70 to muscle functionality.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Atividade Motora/fisiologia , Músculos/fisiologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Choque Térmico HSC70/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Atividade Motora/genética , Músculos/metabolismo , Mutação , Fenótipo , Ligação Proteica , Interferência de RNA , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA