Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2513-2529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604200

RESUMO

Understanding the long-term impact of projected climate change on tropical rainforests is critical given their central role in the Earth's system. Palaeoecological records can provide a valuable perspective on this problem. Here, we examine the effects of past climatic changes on the dominant forest type of Southeast Asia - lowland dipterocarp forest. We use a range of proxies extracted from a 1400-yr-old lacustrine sedimentary sequence from north-eastern Philippines to determine long-term vegetation responses of lowland dipterocarp forest, including its dominant tree group dipterocarps, to changes in precipitation, fire and nutrient availability over time. Our results show a positive relationship between dipterocarp pollen accumulation rates (PARs) and leaf wax hydrogen isotope values, which suggests a negative effect of drier conditions on dipterocarp abundance. Furthermore, we find a positive relationship between dipterocarp PARs and the proxy for phosphorus availability, which suggests phosphorus controls the productivity of these keystone trees on longer time scales. Other pollen taxa show widely varying relationships with the abiotic factors, demonstrating a high diversity of plant functional responses. Our findings provide novel insights into lowland dipterocarp forest responses to changing climatic conditions in the past and highlight potential impacts of future climate change on this globally important ecosystem.


Assuntos
Mudança Climática , Ecossistema , Clima Tropical , Florestas , Árvores/fisiologia , Fósforo
2.
Sci Rep ; 11(1): 23157, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848788

RESUMO

Fire is an essential component of tropical savannas, driving key ecological feedbacks and functions. Indigenous manipulation of fire has been practiced for tens of millennia in Australian savannas, and there is a renewed interest in understanding the effects of anthropogenic burning on savanna systems. However, separating the impacts of natural and human fire regimes on millennial timescales remains difficult. Here we show using palynological and isotope geochemical proxy records from a rare permanent water body in Northern Australia that vegetation, climate, and fire dynamics were intimately linked over the early to mid-Holocene. As the El Niño/Southern Oscillation (ENSO) intensified during the late Holocene, a decoupling occurred between fire intensity and frequency, landscape vegetation, and the source of vegetation burnt. We infer from this decoupling, that indigenous fire management began or intensified at around 3 cal kyr BP, possibly as a response to ENSO related climate variability. Indigenous fire management reduced fire intensity and targeted understory tropical grasses, enabling woody thickening to continue in a drying climate.

3.
Sci Rep ; 11(1): 9032, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907218

RESUMO

An unresolved issue in the vegetation ecology of the Indian subcontinent is whether its savannas, characterized by relatively open formations of deciduous trees in C4-grass dominated understories, are natural or anthropogenic. Historically, these ecosystems have widely been regarded as anthropogenic-derived, degraded descendants of deciduous forests. Despite recent work showing that modern savannas in the subcontinent fall within established bioclimatic envelopes of extant savannas elsewhere, the debate persists, at least in part because the regions where savannas occur also have a long history of human presence and habitat modification. Here we show for the first time, using multiple proxies for vegetation, climate and disturbances from high-resolution, well-dated lake sediments from Lonar Crater in peninsular India, that neither anthropogenic impact nor fire regime shifts, but monsoon weakening during the past ~ 6.0 kyr cal. BP, drove the expansion of savanna at the expense of forests in peninsular India. Our results provide unambiguous evidence for a climate-induced origin and spread of the modern savannas of peninsular India at around the mid-Holocene. We further propose that this savannization preceded and drove the introduction of agriculture and development of sedentism in this region, rather than vice-versa as has often been assumed.

6.
Proc Natl Acad Sci U S A ; 115(13): 3261-3266, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29483260

RESUMO

A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ''rainforest crisis'' to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. [Formula: see text]13C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. [Formula: see text]D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.


Assuntos
Arqueologia , Mudança Climática , Ecossistema , Floresta Úmida , África , Camarões , Humanos , Fatores de Tempo
7.
Front Microbiol ; 8: 1992, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075252

RESUMO

Nitrogen lipid regulator (NlpR) is a pleiotropic regulator that positively controls genes associated with both nitrogen and lipid metabolism in the oleaginous bacterium Rhodococcus jostii RHA1. In this study, we investigated the effect of nlpR disruption and overexpression on the assimilation of 13C-labeled glucose as carbon source, during cultivation of cells under nitrogen-limiting and nitrogen-rich conditions, respectively. Label incorporation into the total lipid extract (TLE) fraction was about 30% lower in the mutant strain in comparison with the wild type strain under low-nitrogen conditions. Moreover, a higher 13C abundance (∼60%) into the extracellular polymeric substance fraction was observed in the mutant strain. nlpR disruption also promoted a decrease in the label incorporation into several TLE-derivative fractions including neutral lipids (NL), glycolipids (GL), phospholipids (PL), triacylglycerols (TAG), diacylglycerols (DAG), and free fatty acids (FFA), with the DAG being the most affected. In contrast, the nlpR overexpression in RHA1 cells under nitrogen-rich conditions produced an increase of the label incorporation into the TLE and its derivative NL and PL fractions, the last one being the highest 13C enriched. In addition, a higher 13C enrichment occurred in the TAG, DAG, and FFA fractions after nlpR induction, with the FFA fraction being the most affected within the TLE. Isotopic-labeling experiments demonstrated that NlpR regulator is contributing in oleaginous phenotype of R. jostii RHA1 to the allocation of carbon into the different lipid fractions in response to nitrogen levels, increasing the rate of carbon flux into lipid metabolism.

8.
Sci Rep ; 6: 35678, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767043

RESUMO

Rainfall in the central Andes associated with the South American Monsoon and the South American Low-Level Jet results from orographic effects on atmospheric circulation exerted by the Andean Plateau and the Eastern Cordillera. However, despite its importance for South American climate, no reliable records exist that allow decoding the evolution of thresholds and interactions between Andean topography and atmospheric circulation, especially regarding the onset of humid conditions in the inherently dry southern central Andes. Here, we employ multi-proxy isotope data of lipid biomarkers, pedogenic carbonates and volcanic glass from the Eastern Cordillera of NW Argentina and present the first long-term evapotranspiration record. We find that regional eco-hydrology and vegetation changes are associated with initiation of moisture transport via the South American Low-Level Jet at 7.6 Ma, and subsequent lateral growth of the orogen at 6.5 Ma. Our results highlight that topographically induced changes in atmospheric circulation patterns, not global climate change, were responsible for late Miocene environmental change in this part of the southern hemisphere. This suggests that mountain building over time fundamentally controlled habitat evolution along the central Andes.

9.
PLoS One ; 11(9): e0163650, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27655028

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0160934.].

10.
PLoS One ; 11(8): e0160934, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505008

RESUMO

To achieve a better understanding of Holocene climate change in the monsoon regions of China, we investigated the molecular distributions and carbon and hydrogen isotope compositions (δ13C and δD values) of long-chain n-alkanes in a peat core from the Shiwangutian (SWGT) peatland, south China over the last 9 ka. By comparisons with other climate records, we found that the δ13C values of the long-chain n-alkanes can be a proxy for humidity, while the δD values of the long-chain n-alkanes primarily recorded the moisture source δD signal during 9-1.8 ka BP and responded to the dry climate during 1.8-0.3 ka BP. Together with the average chain length (ACL) and the carbon preference index (CPI) data, the climate evolution over last 9 ka in the SWGT peatland can be divided into three stages. During the first stage (9-5 ka BP), the δ13C values were depleted and CPI and Paq values were low, while ACL values were high. They reveal a period of warm and wet climate, which is regarded as the Holocene optimum. The second stage (5-1.8 ka BP) witnessed a shift to relatively cool and dry climate, as indicated by the more positive δ13C values and lower ACL values. During the third stage (1.8-0.3 ka BP), the δ13C, δD, CPI and Paq values showed marked increase and ACL values varied greatly, implying an abrupt change to cold and dry conditions. This climate pattern corresponds to the broad decline in Asian monsoon intensity through the latter part of the Holocene. Our results do not support a later Holocene optimum in south China as suggested by previous studies.


Assuntos
Clima , Solo/química , Alcanos/análise , China , Mudança Climática , Sedimentos Geológicos/química , Peso Molecular
11.
Isotopes Environ Health Stud ; 51(1): 124-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25704898

RESUMO

In order to understand the timing of leaf wax synthesis in higher plants, we analysed the variability in leaf wax n-alkane concentration, composition (expressed as average chain length (ACL)), and δ(2)Hwax values as well as plant source water δ(2)H values (xylem and leaf water) in the evergreen tree Quercus agrifolia over a period of 9 months, beginning with leaf flush. We identified three distinct periods of leaf development with the first month following leaf flush being characterized by de novo synthesis and possibly removal of n-alkanes. During the following 3 months, n-alkane concentrations increased sevenfold and δ(2)Hwax and ACL values increased, suggesting this period was the major leaf wax n-alkane formation period. During the remaining 4 months of the experiment, stable values suggest cessation of leaf wax n-alkane formation. We find that n-alkane synthesis in Q. agrifolia takes place over 4 months, substantially longer than that observed for deciduous trees.


Assuntos
Alcanos/metabolismo , Deutério/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Quercus/metabolismo , Ceras/química , Ceras/metabolismo , California , Clima , Folhas de Planta/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Estações do Ano
12.
Plant Cell Environ ; 34(10): 1639-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21696403

RESUMO

The stable hydrogen isotope ratios (δD) of leaf wax n-alkanes record valuable information on plant and ecosystem water relations. It remains, however, unknown if leaf wax n-alkane δD values record only environmental variation during the brief period of time of leaf growth or if leaf wax n-alkane δD values are affected by environmental variability throughout the entire lifespan of a leaf. To resolve these uncertainties, we irrigated Populus trichocarpa trees with a pulse of deuterium-enriched water and used compound-specific stable hydrogen isotope analyses to test if the applied tracer could be recovered from leaf wax n-alkanes of leaves that were at different stages of their development during the tracer application. Our experiment revealed that only leaf wax n-alkanes from leaves that had developed during the time of the tracer application were affected, while leaves that were already fully matured at the time of the tracer application were not. We conclude from our study that under controlled environmental conditions, leaf wax n-alkanes are synthesized only early in the ontogeny of a leaf. Our experiment has implications for the interpretation of leaf wax n-alkane δD values in an environmental context, as it suggests that these compounds record only a brief period of the environmental variability that a leaf experiences throughout its life.


Assuntos
Alcanos/química , Folhas de Planta/química , Populus/crescimento & desenvolvimento , Ceras/química , Alcanos/análise , Deutério/análise , Meio Ambiente , Fatores de Tempo , Árvores/crescimento & desenvolvimento , Água/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(5): 1981-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245322

RESUMO

Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, δ(18)O, of precipitation is associated with environmental conditions, cellulose δ(18)O should be as well. However, plant physiological models using δ(18)O suggest that cellulose δ(18)O is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose δ(18)O values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T(air)) have on cellulose δ(18)O values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose δ(18)O values. Our results revealed that e(a) and T(air) equally influence cellulose δ(18)O values and that distinguishing which of these factors dominates the δ(18)O values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T(air) on the δ(18)O values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose δ(18)O values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that δ(18)O values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences.


Assuntos
Pressão do Ar , Celulose/metabolismo , Myrtaceae/metabolismo , Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Ecossistema , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...