Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1177467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426649

RESUMO

Background and aims: Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI. Methods: Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention. Results: We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]). Conclusion: Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Quimiocina CXCL10 , Coração , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia
2.
Atherosclerosis ; 374: 55-73, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36759270

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) remains the major cause of premature death and disability worldwide, even when patients with an established manifestation of atherosclerotic heart disease are optimally treated according to the clinical guidelines. Apart from the epigenetic control of transcription of the genetic information to messenger RNAs (mRNAs), gene expression is tightly controlled at the post-transcriptional level before the initiation of translation. Although mRNAs are traditionally perceived as the messenger molecules that bring genetic information from the nuclear DNA to the cytoplasmic ribosomes for protein synthesis, emerging evidence suggests that processes controlling RNA metabolism, driven by RNA-binding proteins (RBPs), affect cellular function in health and disease. Over the recent years, vascular endothelial cell, smooth muscle cell and immune cell RBPs have emerged as key co- or post-transcriptional regulators of several genes related to vascular inflammation and atherosclerosis. In this review, we provide an overview of cell-specific function of RNA-binding proteins involved in all stages of ASCVD and how this knowledge may be used for the development of novel precision medicine therapeutics.


Assuntos
Aterosclerose , Humanos , Aterosclerose/genética , Aterosclerose/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inflamação/genética
3.
Cardiovasc Drugs Ther ; 37(2): 401-411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36239832

RESUMO

Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Humanos , Edição de RNA , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , RNA/metabolismo , Cardiopatias/genética , Cardiopatias/terapia , Adenosina
4.
J Am Coll Cardiol ; 80(10): 998-1010, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36049808

RESUMO

BACKGROUND: Patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACS) are at high residual risk for long-term cardiovascular (CV) mortality. Cathepsin S (CTSS) is a lysosomal cysteine protease with elastolytic and collagenolytic activity that has been involved in atherosclerotic plaque rupture. OBJECTIVES: The purpose of this study was to determine the following: 1) the prognostic value of circulating CTSS measured at patient admission for long-term mortality in NSTE-ACS; and 2) its additive value over the GRACE (Global Registry of Acute Coronary Events) risk score. METHODS: This was a single-center cohort study, consecutively recruiting patients with adjudicated NSTE-ACS (n = 1,112) from the emergency department of an academic hospital. CTSS was measured in serum using enzyme-linked immunosorbent assay. All-cause mortality at 8 years was the primary endpoint. CV death was the secondary endpoint. RESULTS: In total, 367 (33.0%) deaths were recorded. CTSS was associated with increased risk of all-cause mortality (HR for highest vs lowest quarter of CTSS: 1.89; 95% CI: 1.34-2.66; P < 0.001) and CV death (HR: 2.58; 95% CI: 1.15-5.77; P = 0.021) after adjusting for traditional CV risk factors, high-sensitivity C-reactive protein, left ventricular ejection fraction, high-sensitivity troponin-T, revascularization and index diagnosis (unstable angina/ non-ST-segment elevation myocardial infarction). When CTSS was added to the GRACE score, it conferred significant discrimination and reclassification value for all-cause mortality (Delta Harrell's C: 0.03; 95% CI: 0.012-0.047; P = 0.001; and net reclassification improvement = 0.202; P = 0.003) and CV death (AUC: 0.056; 95% CI: 0.017-0.095; P = 0.005; and net reclassification improvement = 0.390; P = 0.001) even after additionally considering high-sensitivity troponin-T and left ventricular ejection fraction. CONCLUSIONS: Circulating CTSS is a predictor of long-term mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score.


Assuntos
Síndrome Coronariana Aguda , Catepsinas , Infarto do Miocárdio sem Supradesnível do Segmento ST , Síndrome Coronariana Aguda/diagnóstico , Catepsinas/sangue , Estudos de Coortes , Humanos , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Prognóstico , Medição de Risco , Volume Sistólico , Troponina T , Função Ventricular Esquerda
5.
Thromb Haemost ; 122(11): 1932-1942, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35915966

RESUMO

BACKGROUND: The noncoding antisense transcript for ß-secretase-1 (BACE1-AS) is a long noncoding RNA with a pivotal role in the regulation of amyloid-ß (Aß). We aimed to explore the clinical value of BACE1-AS expression in atherosclerotic cardiovascular disease (ASCVD). METHODS: Expression of BACE1-AS and its target, ß-secretase 1 (BACE1) mRNA, was measured in peripheral blood mononuclear cells derived from 434 individuals (259 without established ASCVD [non-CVD], 90 with stable coronary artery disease [CAD], and 85 with acute coronary syndrome). Intima-media thickness and atheromatous plaques evaluated by ultrasonography, as well as arterial wave reflections and pulse wave velocity, were measured as markers of subclinical ASCVD. Patients were followed for a median of 52 months for major adverse cardiovascular events (MACE). RESULTS: In the cross-sectional arm, BACE1-AS expression correlated with BACE1 expression (r = 0.396, p < 0.001) and marginally with Aß1-40 levels in plasma (r = 0.141, p = 0.008). Higher BACE1-AS was associated with higher estimated CVD risk assessed by HeartScore for non-CVD subjects and by European Society of Cardiology clinical criteria for the total population (p < 0.05 for both). BACE1-AS was associated with higher prevalence of CAD (odds ratio [OR] = 1.85, 95% confidence interval [CI]: 1.37-2.5), multivessel CAD (OR = 1.36, 95% CI: 1.06-1.75), and with higher number of diseased vascular beds (OR = 1.31, 95% CI: 1.07-1.61, for multiple diseased vascular beds) after multivariable adjustment for traditional cardiovascular risk factors. In the prospective arm, BACE1-AS was an independent predictor of MACE in high cardiovascular risk patients (adjusted hazard ratio = 1.86 per ascending tertile, 95% CI: 1.011-3.43, p = 0.046). CONCLUSION: BACE1-AS is associated with the incidence and severity of ASCVD.


Assuntos
Envelhecimento , Aterosclerose , Doenças Cardiovasculares , RNA Longo não Codificante , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Aterosclerose/genética , Doenças Cardiovasculares/genética , Espessura Intima-Media Carotídea , Estudos Transversais , Leucócitos Mononucleares/metabolismo , Estudos Prospectivos , Análise de Onda de Pulso , RNA Antissenso , RNA Longo não Codificante/genética
6.
Rev Cardiovasc Med ; 23(2): 47, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35229538

RESUMO

BACKGROUND: The limitation of aortic size-based criteria is gradually recognized in the prediction of aortic events especially in bicuspid aortic valve (BAV) cohorts, while most aortic events happen in patients with proximal aortic diameters <50 mm. Circulating microRNAs (miRs) have been addressed as a novel tool to improve risk stratification in patients with different aortopathies. We aimed to elucidate the correlation between peripheral whole blood and aortic tissue miRs in order to prove the potential availability as a biomarker in the clinical routine. METHODS: All patients who received elective aortic valve repair/replacement ± proximal aortic replacement to BAV disease (n = 65, 2013-2018) were prospectively included. The expression of 10 miRs (miR-1, miR-17, miR-18a, miR-19a, miR-20a, miR-21, miR-106a, miR-133a, miR-143 and miR-145) was analyzed in the intraoperatively acquired aortic tissue as well as in the peripheral blood before the surgery. RESULTS: We found a significant correlation between circulating miRs in the peripheral blood and aortic tissue levels of miR-21 (r = 0.293, p = 0.02), miR-133a (r = 0.43, p = 0.02), miR-143 (r = 0.68, p < 0.001), and miR-145 (r = 0.68, p < 0.001). Further, the multivariate logistic regression analysis revealed an association between blood and aortic tissue miR-143 levels each other (Odds Ratio [OR] 1.29, 95% Confidence Interval [CI] 1.11-1.67, p = 0.02; OR 1.36, 95% CI 1.19-2.01, p = 0.03, respectively) and a blood/aortic miR-143 level to dilated aorta (OR 3.61, 95% CI 1.62-9.02, p = 0.01; OR 2.92, 95% CI 1.81-7.05, p = 0.02, respectively). CONCLUSIONS: Our study demonstrates a significant correlation between peripheral whole blood and aortic tissue miRs, confirming the hypothesis that circulating miRs may reflect remodeling processes in the proximal aorta in bicuspid aortopathy patients.


Assuntos
Doença da Válvula Aórtica Bicúspide , MicroRNA Circulante , Doenças das Valvas Cardíacas , MicroRNAs , Valva Aórtica/cirurgia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Doenças das Valvas Cardíacas/diagnóstico , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/cirurgia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
7.
J Mol Cell Cardiol ; 160: 111-120, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302813

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as critical regulators in human disease including atherosclerosis. However, the mechanisms involved in the post-transcriptional regulation of the expression of disease-associated lncRNAs are not fully understood. Gene expression studies revealed that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) lncRNA expression was increased by >2-fold in peripheral blood mononuclear cells (PBMCs) derived from patients with coronary artery disease (CAD) or in carotid artery atherosclerotic plaques. We observed a linear association between NEAT1 lncRNA expression and prevalence of CAD which was independent of age, sex, cardiovascular traditional risk factors and renal function. NEAT1 expression was induced by TNF-α, while silencing of NEAT1 profoundly attenuated the TNF-α-induced vascular endothelial cell pro-inflammatory response as defined by the expression of CXCL8, CCL2, VCAM1 and ICAM1. Overexpression of the RNA editing enzyme adenosine deaminase acting on RNA-1 (ADAR1), but not of its editing-deficient mutant, upregulated NEAT1 levels. Conversely, silencing of ADAR1 suppressed the basal levels and the TNF-α-induced increase of NEAT1. NEAT1 lncRNA expression was strongly associated with ADAR1 in CAD and peripheral arterial vascular disease. RNA editing mapping studies revealed the presence of several inosines in close proximity to AU-rich elements within the AluSx3+/AluJo- double-stranded RNA complex. Silencing of the stabilizing RNA-binding protein AUF1 reduced NEAT1 levels while silencing of ADAR1 profoundly affected the binding capacity of AUF1 to NEAT1. Together, our findings propose a mechanism by which ADAR1-catalyzed A-to-I RNA editing controls NEAT1 lncRNA stability in ASCVD.


Assuntos
Adenosina/metabolismo , Elementos Alu/genética , Aterosclerose/sangue , Doença da Artéria Coronariana/sangue , Inosina/metabolismo , Placa Aterosclerótica/sangue , Edição de RNA/genética , Estabilidade de RNA/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/genética , Sítios de Ligação , Células Cultivadas , Estudos de Coortes , Doença da Artéria Coronariana/genética , Feminino , Inativação Gênica , Ribonucleoproteína Nuclear Heterogênea D0/genética , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção
8.
Atherosclerosis ; 327: 49-58, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34038763

RESUMO

BACKGROUND AND AIMS: Preclinical data suggest that the ageing-induced miR-34a regulates vascular senescence. Herein we sought to assess whether the miR-34 family members miR-34a, miR-34b and miR-34c are involved in human arterial disease. METHODS: Expression levels of miR-34a/b/c were quantified by TaqMan assay in peripheral blood mononuclear cells (PBMCs) derived from a consecutive cohort of 221 subjects who underwent cardiovascular risk assessment and thorough vascular examination for aortic stiffness and extent of arterial atherosclerosis. RESULTS: High miR-34a was independently associated with the presence of CAD [OR (95%C.I.): 3.87 (1.56-9.56); p = 0.003] and high miR-34c with the number of diseased arterial beds [OR (95%C.I.): 1.88 (1.034-3.41); p = 0.038], while concurrent high expression of miR-34-a/c or all three miR-34a/b/c was associated with aortic stiffening (miR-34a/c: p = 0.022; miR-34a/b/c: p = 0.041) and with the extent of atherosclerosis [OR (95%C.I.) for number of coronary arteries [miR-34a/c: 3.29 (1.085-9.95); miR-34a/b/c: 6.06 (1.74-21.2)] and number of diseased arterial beds [miR-34a/c: 3.51 (1.45-8.52); miR-34a/b/c: 2.89 (1.05-7.92)] after controlling for possible confounders (p < 0.05 for all). Mechanistically, the increased levels of miR-34a or miR-34c were inversely associated with expression of SIRT1 or JAG1, NOTCH2, CTNNB1 and ATF1, respectively. The association of miR-34a/c or miR-34a/b/c with CAD was mainly mediated through SIRT1 and to a lesser extent through JAG1 as revealed by generalized structural equation modeling. Leukocyte-specific ablation of miR-34a/b/c ameliorates atherosclerotic plaque development and increases Sirt1 and Jag1 expression in an atherosclerosis mouse model confirming the human findings. CONCLUSIONS: The present study reveals the clinical significance of the additive role of miR-34a/b/c in vascular ageing and atherosclerotic vascular disease.


Assuntos
Envelhecimento , Aterosclerose , MicroRNAs , Humanos , Proteína Jagged-1 , Leucócitos Mononucleares , Sirtuína 1
9.
J Am Coll Cardiol ; 75(8): 952-967, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130931

RESUMO

Aging-related cellular and molecular processes including low-grade inflammation are major players in the pathogenesis of cardiovascular disease (CVD) and Alzheimer's disease (AD). Epidemiological studies report an independent interaction between the development of dementia and the incidence of CVD in several populations, suggesting the presence of overlapping molecular mechanisms. Accumulating experimental and clinical evidence suggests that amyloid-beta (Aß) peptides may function as a link among aging, CVD, and AD. Aging-related vascular and cardiac deposition of Αß induces tissue inflammation and organ dysfunction, both important components of the Alzheimer's disease amyloid hypothesis. In this review, the authors describe the determinants of Aß metabolism, summarize the effects of Aß on atherothrombosis and cardiac dysfunction, discuss the clinical value of Αß1-40 in CVD prognosis and patient risk stratification, and present the therapeutic interventions that may alter Aß metabolism in humans.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Cardiovasculares/metabolismo , Doença de Alzheimer/etiologia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Mortalidade , Medição de Risco
11.
Cytokine ; 122: 154157, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29198385

RESUMO

Platelets are inflammatory anuclear cells with a well-established role in the development and manifestation of atherosclerosis. Activated platelets secrete a plethora of chemokines including CXCL4 or platelet factor 4 (PF4), CCL5, CXCL12 or stromal cell derived factor-1α (SDF-1α), CXCL16 and others, which initiate or promote local inflammatory processes at sites of vascular injury. These processes are mainly mediated by the recruitment of circulating haematopoietic stem cells, neutrophils, monocytes or lymphocytes on vascular wall. Under acute ischemic conditions platelet-derived chemokines may promote the mobilization of bone marrow-derived progenitor cells and their homing at lesion sites. This review focuses on the role of platelet-derived chemokines in inflammation and atherosclerosis. Further, we discuss the clinical value of plasma levels of chemokines in the prognosis of atherosclerotic heart disease.


Assuntos
Aterosclerose/metabolismo , Plaquetas/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL16/metabolismo , Doença da Artéria Coronariana/metabolismo , Humanos , Inflamação/imunologia , Monócitos/metabolismo , Ativação Plaquetária/imunologia , Fator Plaquetário 4/metabolismo , Fatores de Risco
12.
Ann Intern Med ; 168(12): 855-865, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799975

RESUMO

Background: Amyloid-ß (1-40) (Aß40) is implicated in mechanisms related to plaque destabilization and correlates with adverse outcomes in stable coronary artery disease. Objective: To determine the prognostic and reclassification value of baseline circulating levels of Aß40 after adjustment for the Global Registry of Acute Coronary Events (GRACE) score, which is widely recommended for risk stratification in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). Design: Retrospective cohort study using data from 2 independent prospective cohorts, the Heidelberg study (n = 1145) and the validation multicenter international APACE (Advantageous Predictors of Acute Coronary Syndrome Evaluation) study (n = 734). Setting: Academic hospitals in 7 European countries. Participants: Patients with adjudicated NSTE-ACS followed for a median of 21.9 and 24.9 months in the Heidelberg and APACE studies, respectively. Measurements: All-cause mortality was the primary end point. Results: Amyloid-ß (1-40) was associated with mortality after multivariate adjustment for age, sex, diabetes mellitus, high-sensitivity cardiac troponin T and C-reactive protein, revascularization, and ACS type (Heidelberg cohort hazard ratio [HR] for 80th vs. 20th percentiles, 1.66 [95% CI, 1.06 to 2.61; P = 0.026]; APACE cohort HR, 1.50 [CI, 1.15 to 1.96; P = 0.003]). It was also associated with mortality after adjustment for the GRACE score (Heidelberg cohort HR for 80th vs. 20th percentiles, 1.11 [CI, 1.04 to 1.18; P = 0.001]; APACE cohort HR, 1.39 [CI, 1.02 to 1.88; P = 0.036]). Amyloid-ß (1-40) correctly reclassified risk for death over the GRACE score (net reclassification index, 33.4% and 47.1% for the Heidelberg and APACE cohorts, respectively) (P < 0.05). Limitation: At low concentrations of Aß40, dose-response associations with mortality differed between cohorts, possibly because of varying blood preparations used to measure Aß40. Conclusion: Circulating Aß40 is a predictor of mortality and improves risk stratification of patients with NSTE-ACS over the GRACE score recommended by clinical guidelines. The clinical application of Aß40 as a novel biomarker in NSTE-ACS should be further explored and validated. Primary Funding Source: German Cardiac Society.


Assuntos
Síndrome Coronariana Aguda/mortalidade , Peptídeos beta-Amiloides/sangue , Fragmentos de Peptídeos/sangue , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Fatores de Risco
13.
Antioxid Redox Signal ; 29(9): 846-863, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28762759

RESUMO

SIGNIFICANCE: Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES: This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS: Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.


Assuntos
Adenosina/genética , Doença/genética , Inosina/genética , Edição de RNA/genética , RNA/genética , Adenosina/metabolismo , Animais , Desaminação , Homeostase/genética , Humanos , Inosina/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA