Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384519

RESUMO

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Assuntos
Proteínas do Domínio Armadillo/biossíntese , Axônios/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas de Drosophila/biossíntese , Evolução Molecular , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Animais , Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Serina-Treonina Quinases/genética
2.
Front Cell Dev Biol ; 8: 624181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585465

RESUMO

Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.

3.
Science ; 364(6439)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048465

RESUMO

Central nervous system (CNS) circuit development requires subcellular control of synapse formation and patterning of synapse abundance. We identified the Drosophila membrane-anchored phosphatase of regenerating liver (Prl-1) as an axon-intrinsic factor that promotes synapse formation in a spatially restricted fashion. The loss of Prl-1 in mechanosensory neurons reduced the number of CNS presynapses localized on a single axon collateral and organized as a terminal arbor. Flies lacking all Prl-1 protein had locomotor defects. The overexpression of Prl-1 induced ectopic synapses. In mechanosensory neurons, Prl-1 modulates the insulin receptor (InR) signaling pathway within a single contralateral axon compartment, thereby affecting the number of synapses. The axon branch-specific localization and function of Prl-1 depend on untranslated regions of the prl-1 messenger RNA (mRNA). Therefore, compartmentalized restriction of Prl-1 serves as a specificity factor for the subcellular control of axonal synaptogenesis.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Tirosina Fosfatases/fisiologia , Sinapses/fisiologia , Animais , Axônios/enzimologia , Sistema Nervoso Central/enzimologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Locomoção/genética , Locomoção/fisiologia , Mecanorreceptores/enzimologia , Fosfatidilinositóis/metabolismo , Domínios Proteicos , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sinapses/enzimologia
4.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745319

RESUMO

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Assuntos
Transporte Ativo do Núcleo Celular , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/metabolismo , Neuritos/fisiologia , Sinapses/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Núcleo Celular/genética , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , beta Carioferinas/genética , beta Carioferinas/metabolismo
5.
Cell ; 162(5): 1140-54, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317474

RESUMO

Axonal branching contributes substantially to neuronal circuit complexity. Studies in Drosophila have shown that loss of Dscam1 receptor diversity can fully block axon branching in mechanosensory neurons. Here we report that cell-autonomous loss of the receptor tyrosine phosphatase 69D (RPTP69D) and loss of midline-localized Slit inhibit formation of specific axon collaterals through modulation of Dscam1 activity. Genetic and biochemical data support a model in which direct binding of Slit to Dscam1 enhances the interaction of Dscam1 with RPTP69D, stimulating Dscam1 dephosphorylation. Single-growth-cone imaging reveals that Slit/RPTP69D are not required for general branch initiation but instead promote the extension of specific axon collaterals. Hence, although regulation of intrinsic Dscam1-Dscam1 isoform interactions is essential for formation of all mechanosensory-axon branches, the local ligand-induced alterations of Dscam1 phosphorylation in distinct growth-cone compartments enable the spatial specificity of axon collateral formation.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Animais , Moléculas de Adesão Celular , Drosophila melanogaster/citologia , Cones de Crescimento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA