Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(22): 4871-4884, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044531

RESUMO

PURPOSE: To evaluate AZD4635, an adenosine A2A receptor antagonist, as monotherapy or in combination with durvalumab in patients with advanced solid tumors. PATIENTS AND METHODS: In phase Ia (dose escalation), patients had relapsed/refractory solid tumors; in phase Ib (dose expansion), patients had checkpoint inhibitor-naïve metastatic castration-resistant prostate cancer (mCRPC) or colorectal carcinoma, non-small cell lung cancer with prior anti-PD-1/PD-L1 exposure, or other solid tumors (checkpoint-naïve or prior anti-PD-1/PD-L1 exposure). Patients received AZD4635 monotherapy (75-200 mg once daily or 125 mg twice daily) or in combination with durvalumab (AZD4635 75 or 100 mg once daily). The primary objective was safety; secondary objectives included antitumor activity and pharmacokinetics; exploratory objectives included evaluation of an adenosine gene signature in patients with mCRPC. RESULTS: As of September 8, 2020, 250 patients were treated (AZD4635, n = 161; AZD4635+durvalumab, n = 89). In phase Ia, DLTs were observed with monotherapy (125 mg twice daily; n = 2) and with combination treatment (75 mg; n = 1) in patients receiving nanosuspension. The most common treatment-related adverse events included nausea, fatigue, vomiting, decreased appetite, dizziness, and diarrhea. The RP2D of the AZD4635 capsule formulation was 75 mg once daily, as monotherapy or in combination with durvalumab. The pharmacokinetic profile was dose-proportional, and exposure was adequate to cover target with 100 mg nanosuspension or 75 mg capsule once daily. In patients with mCRPC receiving monotherapy or combination treatment, tumor responses (2/39 and 6/37, respectively) and prostate-specific antigen responses (3/60 and 10/45, respectively) were observed. High versus low blood-based adenosine signature was associated with median progression-free survival of 21 weeks versus 8.7 weeks. CONCLUSIONS: AZD4635 monotherapy or combination therapy was well tolerated. Objective responses support additional phase II combination studies in patients with mCRPC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/efeitos adversos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/etiologia , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Adenosina , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética
2.
Sci Rep ; 11(1): 16767, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408239

RESUMO

Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.


Assuntos
Proteínas Morfogenéticas Ósseas/imunologia , Fatores de Diferenciação de Crescimento/imunologia , Fatores Imunológicos/imunologia , Interferon-alfa/imunologia , Proteínas Associadas a Pancreatite/imunologia , Linfócitos T Reguladores/imunologia , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/genética , Humanos , Fatores Imunológicos/genética , Interferon-alfa/genética , Proteínas Associadas a Pancreatite/genética
3.
Stem Cell Reports ; 10(4): 1412-1425, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29551673

RESUMO

Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5'-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication.


Assuntos
5'-Nucleotidase/metabolismo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Adenosina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Epitélio/patologia , Tubas Uterinas/patologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Esferoides Celulares
4.
Drug Discov Today ; 22(11): 1686-1696, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28676406

RESUMO

Over the past few years, several preclinical studies have highlighted the value of CD73 (ecto-5'-nucleotidase) as a potential therapeutic target for cancer therapy. Indeed, the pharmacological blockade of CD73, via monoclonal antibodies or small molecules, has promise in counteracting cancer development, growth and spread. Synergistic combinations of anti-CD73 drugs with conventional cancer treatments (i.e., chemotherapy, radiation therapy, immunotherapy, targeted therapy) have increased therapeutic potential. In this review, we discuss the potential synergistic effects of CD73 blockers and conventional antineoplastic therapies in the treatment of cancer.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Imunoterapia/métodos , Terapia de Alvo Molecular , Neoplasias/patologia
5.
Sci Rep ; 7: 40098, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067257

RESUMO

Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Trastuzumab/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Humanos , Camundongos Nus , Receptor ErbB-2/imunologia , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
6.
MAbs ; 9(3): 438-454, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055299

RESUMO

We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.


Assuntos
Anticorpos Biespecíficos/biossíntese , Imunoglobulina G/imunologia , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/biossíntese , Animais , Anticorpos Biespecíficos/isolamento & purificação , Receptores ErbB/imunologia , Humanos , Proteólise , Receptor IGF Tipo 1/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
7.
Oncoimmunology ; 5(8): e1208875, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27622077

RESUMO

MEDI9447 is a human monoclonal antibody that is specific for the ectoenzyme CD73 and currently undergoing Phase I clinical trials. Here we show that MEDI9447 is a potent inhibitor of CD73 ectonucleotidase activity, with wide ranging immune regulatory consequences. MEDI9447 results in relief from adenosine monophosphate (AMP)-mediated lymphocyte suppression in vitro and inhibition of mouse syngeneic tumor growth in vivo. In contrast with other cancer immunotherapy agents such as checkpoint inhibitors or T-cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment of mouse models. Changes include significant alterations in a number of tumor micro-environmental subpopulations including increases in CD8(+) effector cells and activated macrophages. Furthermore, these changes correlate directly with responder and non-responder subpopulations within animal studies using syngeneic tumors. Combination data showing additive activity between MEDI9447 and anti-PD-1 antibodies using human cells in vitro and mouse tumor models further demonstrate the potential value of relieving adenosine-mediated immunosuppression. Based on these data, a Phase I study to test the safety, tolerability, and clinical activity of MEDI9447 in cancer patients was initiated (NCT02503774).

8.
Comp Med ; 66(2): 90-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27053562

RESUMO

In recent years, biodistribution analyses of pharmaceutical compounds in preclinical animal models have become an integral part of drug development. Here we report on the use of optical imaging biodistribution analyses in a mouse xenograft model to identify tissues that nonspecifically retained a bispecific antibody under development. Although our bispecific antibody bound both the epidermal growth factor receptor and insulin growth factor 1 receptor are expressed on H358, nonsmall-cell lung carcinoma cells, the fluorescence from labeled bispecific antibody was less intense than expected in xenografted tumors. Imaging analyses of live mice and major organs revealed that the majority of the Alexa Fluor 750 labeled bispecific antibody was sequestered in the liver within 2 h of injection. However, results varied depending on which near-infrared fluorophore was used, and fluorescence from the livers of mice injected with bispecific antibody labeled with Alexa Fluor 680 was less pronounced than those labeled with Alexa Fluor 750. The tissue distribution of control antibodies remained unaffected by label and suggests that the retention of fluorophores in the liver may differ. Given these precautions, these results support the incorporation of optical imaging biodistribution analyses in biotherapeutic development strategies.


Assuntos
Anticorpos Biespecíficos/farmacocinética , Corantes Fluorescentes , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Desenho de Fármacos , Descoberta de Drogas , Receptores ErbB , Feminino , Fígado/patologia , Camundongos , Modelos Animais , Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Succinimidas , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
MAbs ; 8(3): 454-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26854859

RESUMO

CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.


Assuntos
5'-Nucleotidase , Monofosfato de Adenosina , Anticorpos Monoclonais/química , Antineoplásicos/química , Inibidores Enzimáticos/química , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/química , Monofosfato de Adenosina/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Hidrólise
10.
MAbs ; 8(3): 585-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910134

RESUMO

Targeting multiple receptors with bispecific antibodies is a novel approach that may prevent the development of resistance to cancer treatments. Despite the initial promise, full clinical benefit of this technology has yet to be realized. We hypothesized that in order to optimally exploit bispecific antibody technology, thorough fundamental knowledge of their pharmacological properties compared to that of single agent combinations was needed. Therefore, we developed a mathematical model for the binding of bispecific antibodies to their targets that accounts for the spatial distribution of the binding receptors and the kinetics of binding, and is scalable for increasing valency. The model provided an adequate description of internal and literature-reported in vitro data on bispecific binding. Simulations of in vitro binding with the model indicated that bispecific antibodies are not always superior in their binding potency to combination of antibodies, and the affinity of bispecific arms must be optimized for maximum binding potency. Our results suggest that this tool can be used for the design and development of the next generation of anti-cancer bispecific compounds.


Assuntos
Anticorpos Biespecíficos , Simulação por Computador , Modelos Imunológicos , Modelos Moleculares , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia
11.
Mol Cancer ; 14: 147, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26227951

RESUMO

BACKGROUND: Monolayer cultures of immortalised cell lines are a popular screening tool for novel anti-cancer therapeutics, but these methods can be a poor surrogate for disease states, and there is a need for drug screening platforms which are more predictive of clinical outcome. In this study, we describe a phenotypic antibody screen using three-dimensional cultures of primary cells, and image-based multi-parametric profiling in PC-3 cells, to identify anti-cancer biologics against new therapeutic targets. METHODS: ScFv Antibodies and designed ankyrin repeat proteins (DARPins) were isolated using phage display selections against primary non-small cell lung carcinoma cells. The selected molecules were screened for anti-proliferative and pro-apoptotic activity against primary cells grown in three-dimensional culture, and in an ultra-high content screen on a 3-D cultured cell line using multi-parametric profiling to detect treatment-induced phenotypic changes. The targets of molecules of interest were identified using a cell-surface membrane protein array. An anti-CUB domain containing protein 1 (CDCP1) antibody was tested for tumour growth inhibition in a patient-derived xenograft model, generated from a stage-IV non-small cell lung carcinoma, with and without cisplatin. RESULTS: Two primary non-small cell lung carcinoma cell models were established for antibody isolation and primary screening in anti-proliferative and apoptosis assays. These assays identified multiple antibodies demonstrating activity in specific culture formats. A subset of the DARPins was profiled in an ultra-high content multi-parametric screen, where 300 morphological features were measured per sample. Machine learning was used to select features to classify treatment responses, then antibodies were characterised based on the phenotypes that they induced. This method co-classified several DARPins that targeted CDCP1 into two sets with different phenotypes. Finally, an anti-CDCP1 antibody significantly enhanced the efficacy of cisplatin in a patient-derived NSCLC xenograft model. CONCLUSIONS: Phenotypic profiling using complex 3-D cell cultures steers hit selection towards more relevant in vivo phenotypes, and may shed light on subtle mechanistic variations in drug candidates, enabling data-driven decisions for oncology target validation. CDCP1 was identified as a potential target for cisplatin combination therapy.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Neoplasias , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Cisplatino/farmacologia , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Biblioteca de Peptídeos , Fenótipo , Anticorpos de Cadeia Única/farmacologia , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biomol Screen ; 17(7): 993-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22522649

RESUMO

5'-Ectonucleotidase (NT5E) catalyzes the conversion of adenosine monophosphate to adenosine and free phosphate. The role of this ectonucleotidase and its production of adenosine are linked with immune function, angiogenesis, and cancer. NT5E activity is typically assayed either by chromatographic quantification of substrates and products using high-performance liquid chromatography (HPLC) or by quantification of free phosphate using malachite green. These methods are not suitable for robust screening assays of NT5E activity. HPLC is not readily suitable for the rapid and efficient assay of multiple samples and malachite green is highly sensitive to the phosphate-containing buffers common in various media and sample buffers. Here the development and validation of a novel high-throughput ectonucleotidase screening assay are described, which makes use of a luciferase-based assay reagent, the Promega CellTiter-Glo kit, to measure the catabolism of AMP by NT5E. This multiwell plate-based assay facilitates the screening of potential ectonucleotidase antagonists and is unaffected by the presence of contaminating phosphate molecules present in screening samples.


Assuntos
5'-Nucleotidase/análise , Monofosfato de Adenosina/metabolismo , Adenosina/biossíntese , Ensaios de Triagem em Larga Escala/métodos , Nucleotidases/análise , Cromatografia Líquida de Alta Pressão/métodos , Proteínas Ligadas por GPI/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...