Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 6(9)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899895

RESUMO

BACKGROUND: Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. METHODS AND RESULTS: Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E1 and E2, respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (Eed) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P=0.010). Longitudinal E1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P=0.018), whereas there were no significant changes in longitudinal E2 or circumferential E1 and E2. Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. CONCLUSIONS: RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in Eed, and biomechanically, by an increase in longitudinal E1. Modest increases in tissue biomechanical stiffness are associated with large increases in Eed. Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium.


Assuntos
Ventrículos do Coração/fisiopatologia , Hemodinâmica , Hipertensão Pulmonar/fisiopatologia , Pesquisa Translacional Biomédica/métodos , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Animais , Fenômenos Biomecânicos , Cateterismo Cardíaco , Constrição Patológica , Modelos Animais de Doenças , Módulo de Elasticidade , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Ratos Sprague-Dawley , Fatores de Tempo , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/etiologia , Pressão Ventricular
2.
Cell Mol Bioeng ; 5(3): 254-265, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162672

RESUMO

The semilunar (aortic and pulmonary) heart valves function under dramatically different hemodynamic environments, and have been shown to exhibit differences in mechanical properties, extracellular matrix (ECM) structure, and valve interstitial cell (VIC) biosynthetic activity. However, the relationship between VIC function and the unique micromechanical environment in each semilunar heart valve remains unclear. In the present study, we quantitatively compared porcine semilunar mRNA expression of primary ECM constituents, and layer- and valve-specific VIC-collagen mechanical interactions under increasing transvalvular pressure (TVP). Results indicated that the aortic valve (AV) had a higher fibrillar collagen mRNA expression level compared to the pulmonary valve (PV). We further noted that VICs exhibited larger deformations with increasing TVP in the collagen rich fibrosa layer, with substantially smaller changes in the spongiosa and ventricularis layers. While the VIC-collagen micro-mechanical coupling varied considerably between the semilunar valves, we observed that the VIC deformations in the fibrosa layer were similar at each valve's respective peak TVP. This result suggests that each semilunar heart valve's collagen fiber microstructure is organized to induce a consistent VIC deformation under its respective diastolic TVP. Collectively, our results are consistent with higher collagen biosynthetic demands for the AV compared to the PV, and that the valvular collagen microenvironment may play a significant role in regulating VIC function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA