Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Ther Nucleic Acids ; 35(1): 102148, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439910

RESUMO

Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.

2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982987

RESUMO

Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is expressed in photoreceptors where it facilitates the assembly of phosphodiesterase 6 (PDE6) which hydrolyses cGMP within the phototransduction cascade. Genetic variations in AIPL1 cause type 4 Leber congenital amaurosis (LCA4), which presents as rapid loss of vision in early childhood. Limited in vitro LCA4 models are available, and these rely on patient-derived cells harbouring patient-specific AIPL1 mutations. While valuable, the use and scalability of individual patient-derived LCA4 models may be limited by ethical considerations, access to patient samples and prohibitive costs. To model the functional consequences of patient-independent AIPL1 mutations, CRISPR/Cas9 was implemented to produce an isogenic induced pluripotent stem cell line harbouring a frameshift mutation in the first exon of AIPL1. Retinal organoids were generated using these cells, which retained AIPL1 gene transcription, but AIPL1 protein was undetectable. AIPL1 knockout resulted in a decrease in rod photoreceptor-specific PDE6α and ß, and increased cGMP levels, suggesting downstream dysregulation of the phototransduction cascade. The retinal model described here provides a novel platform to assess functional consequences of AIPL1 silencing and measure the rescue of molecular features by potential therapeutic approaches targeting mutation-independent pathogenesis.


Assuntos
Amaurose Congênita de Leber , Pré-Escolar , Humanos , Amaurose Congênita de Leber/patologia , Proteínas de Transporte/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Organoides/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo
3.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084639

RESUMO

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Assuntos
Amaurose Congênita de Leber , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Criança , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Guanosina Monofosfato , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Organoides/metabolismo , Oxidiazóis , Diester Fosfórico Hidrolases/genética
4.
Sci Rep ; 10(1): 17520, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067476

RESUMO

Disease-causing sequence variants in the highly polymorphic AIPL1 gene are associated with a broad spectrum of inherited retinal diseases ranging from severe autosomal recessive Leber congenital amaurosis to later onset retinitis pigmentosa. AIPL1 is a photoreceptor-specific co-chaperone that interacts with HSP90 to facilitate the stable assembly of retinal cGMP phosphodiesterase, PDE6. In this report, we establish unequivocal correlations between patient clinical phenotypes and in vitro functional assays of uncharacterized AIPL1 variants. We confirm that missense and nonsense variants in the FKBP-like and tetratricopeptide repeat domains of AIPL1 lead to the loss of both HSP90 interaction and PDE6 activity, confirming these variants cause LCA. In contrast, we report the association of p.G122R with milder forms of retinal degeneration, and show that while p.G122R had no effect on HSP90 binding, the modulation of PDE6 cGMP levels was impaired. The clinical history of these patients together with our functional assays suggest that the p.G122R variant is a rare hypomorphic allele with a later disease onset, amenable to therapeutic intervention. Finally, we report the primate-specific proline-rich domain to be dispensable for both HSP90 interaction and PDE6 activity. We conclude that variants investigated in this domain do not cause disease, with the exception of p.A352_P355del associated with autosomal dominant cone-rod dystrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Amaurose Congênita de Leber/genética , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Idoso , Alelos , Animais , Células CHO , Cricetulus , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , DNA/metabolismo , Epitopos , Frequência do Gene , Variação Genética , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Heterozigoto , Homozigoto , Humanos , Amaurose Congênita de Leber/metabolismo , Microscopia Confocal , Pessoa de Meia-Idade , Fenótipo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Retinose Pigmentar/metabolismo , Adulto Jovem
5.
J Biol Chem ; 295(42): 14402-14418, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817338

RESUMO

The retina-specific chaperone aryl hydrocarbon interacting protein-like 1 (AIPL1) is essential for the correct assembly of phosphodiesterase 6 (PDE6), which is a pivotal effector enzyme for phototransduction and vision because it hydrolyzes cGMP. AIPL1 interacts with the cytokine-inducible ubiquitin-like modifier FAT10, which gets covalently conjugated to hundreds of proteins and targets its conjugation substrates for proteasomal degradation, but whether FAT10 affects PDE6 function or turnover is unknown. Here, we show that FAT10 mRNA is expressed in human retina and identify rod PDE6 as a retina-specific substrate of FAT10 conjugation. We found that AIPL1 stabilizes the FAT10 monomer and the PDE6-FAT10 conjugate. Additionally, we elucidated the functional consequences of PDE6 FAT10ylation. On the one hand, we demonstrate that FAT10 targets PDE6 for proteasomal degradation by formation of a covalent isopeptide linkage. On the other hand, FAT10 inhibits PDE6 cGMP hydrolyzing activity by noncovalently interacting with the PDE6 GAFa and catalytic domains. Therefore, FAT10 may contribute to loss of PDE6 and, as a consequence, degeneration of retinal cells in eye diseases linked to inflammation and inherited blindness-causing mutations in AIPL1.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Retina/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Proteólise/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ubiquitina/metabolismo , Ubiquitinas/química , Ubiquitinas/genética
6.
Adv Exp Med Biol ; 1074: 381-386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721967

RESUMO

Mutations in the photoreceptor/pineal-expressed gene, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), are mainly associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy that occurs in early childhood. AIPL1 functions as a photoreceptor-specific molecular co-chaperone that interacts specifically with the molecular chaperones HSP90 and HSP70 to facilitate the correct folding and assembly of the retinal cGMP phosphodiesterase (PDE6) holoenzyme. The absence of AIPL1 leads to a dramatic degeneration of rod and cone cells and a complete loss of any light-dependent electrical response. Here we review the important role of AIPL1 in photoreceptor functionality.


Assuntos
Proteínas de Transporte/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Dobramento de Proteína , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Transporte/genética , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Transdução de Sinal Luminoso , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/patologia , Mapeamento de Interação de Proteínas , Prenilação de Proteína , Processamento de Proteína Pós-Traducional , Subunidades Proteicas
8.
Hum Mol Genet ; 26(22): 4465-4480, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973376

RESUMO

Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of alternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetratricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 significantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6α subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6α subunit in the cytosol. In summary, we have successfully validated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients.


Assuntos
Proteínas de Transporte/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CHO , Proteínas de Transporte/química , Cricetulus , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Precursores de RNA/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Relação Estrutura-Atividade
9.
Methods Mol Biol ; 1447: 385-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27514817

RESUMO

Mitogen activated protein kinases (MAPK) pathways play a key role in orchestrating the eukaryotic cellular response to different stimuli. In this process, phosphorylation of both conserved threonine and tyrosine residues of MAPKs is essential for their activation. Identification of tyrosine and dual specificity protein phosphatases capable of dephosphorylating these phosphosites is thus critical to gain insight into their regulation. Due to the conservation of pivotal elements in eukaryotic signaling, yeast has turned into a valuable tool to increase the knowledge of MAPK signaling in other cell types. Here we describe an in vivo method to evaluate the capacity of a protein, from yeast or other origin, to act as a MAPK phosphatase. It relies on the ability of the phosphatase to reduce, when overexpressed, both the amount of activated MAPK and the transcription from a specific promoter regulated by the corresponding pathway. To this end, the pathway has to be previously activated, preferentially through overexpression of a hyperactive allele of an upstream component within the MAPK module. Additionally, the ability of an overexpressed "trapping" inactive phosphatase version to modify these readouts is also analyzed. Western blotting analysis with specific anti-phospho MAPK antibodies and flow cytometry-based determination of fluorescence produced by GFP whose expression is driven by MAPK-regulated promoters are the selected techniques for monitoring these readouts.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Citometria de Fluxo/métodos , Sistema de Sinalização das MAP Quinases , Fosforilação , Mapas de Interação de Proteínas , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima
10.
J Biol Chem ; 291(11): 5461-5472, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26786099

RESUMO

The yeast cell wall integrity MAPK Slt2 mediates the transcriptional response to cell wall alterations through phosphorylation of transcription factors Rlm1 and SBF. However, the variety of cellular functions regulated by Slt2 suggests the existence of a significant number of still unknown substrates for this kinase. To identify novel Slt2 targets, we generated and characterized an analog-sensitive mutant of Slt2 (Slt2-as) that can be specifically inhibited by bulky kinase inhibitor analogs. We demonstrated that Slt2-as is able to use adenosine 5'-[γ-thio]triphosphate analogs to thiophosphorylate its substrates in yeast cell extracts as well as when produced as recombinant proteins in Escherichia coli. Taking advantage of this chemical-genetic approach, we found that Slt2 phosphorylates the MAPK phosphatase Msg5 both in the N-terminal regulatory and C-terminal catalytic domains. Moreover, we identified the calcineurin regulator Rcn2, the 4E-BP (translation initiation factor eIF4E-binding protein) translation repressor protein Caf20, and the Golgi-associated adaptor Gga1 as novel targets for Slt2. The Slt2 phosphorylation sites on Rcn2 and Caf20 were determined. We also demonstrated that, in the absence of SLT2, the GGA1 paralog GGA2 is essential for cells to survive under cell wall stress and for proper protein sorting through the carboxypeptidase Y pathway. Therefore, Slt2-as provides a powerful tool that can expand our knowledge of the outputs of the cell wall integrity MAPK pathway.


Assuntos
Parede Celular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Parede Celular/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
11.
Genetics ; 202(1): 141-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546002

RESUMO

The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase-encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
12.
Fungal Genet Biol ; 77: 1-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736922

RESUMO

The lack of signaling through MAPK pathways leads to a defective cellular response to the corresponding stimulus, but an improper hyperactivation of these routes results in deleterious effects as well. Protein phosphorylation is an activating modification for signal transmission through components of MAPK pathways and thus, protein phosphatases are key negative regulators of these cellular routes by limiting excessive signaling activity. However, in contrast to most of the protein kinases operating in MAPK pathways, protein phosphatases usually exhibit redundancy and promiscuity, which has limited the identification of their function. In order to identify new putative phosphatases operating in Saccharomyces cerevisiae MAPK signaling, we have taken advantage of growth inhibition promoted by overproduction of constitutively active components of the mating and cell wall integrity (CWI) pathways to perform a screen with a collection of 43 protein phosphatases or phosphatase-regulatory proteins. The phosphatases able to alleviate the induced growth inhibition when overproduced were further studied by testing their capacity to downregulate expression of mating and CWI responsive promoters and the consequences of their removal on MAPK signaling. Epistasis analysis placed the Ser/Thr protein phosphatase Ppq1 as a regulator of the mating MAPK module downstream the MAPKKK Ste11. The dual specificity phosphatase Yvh1 was found to be important for the maintenance of cell wall integrity and appropriate signaling through the CWI pathway. Moreover, we have found that Ptc2 and Ptc4 bind to the CWI MAPK Slt2. Together with known phosphatases of the mating and CWI pathway, as Msg5 or Ptp2, other putative negative regulators of both pathways that came up in the screening were Ptc2, Oca2 and Ptp1. We show that Ptp1 physically interacts with Slt2 and the mating MAPK Fus3. Elimination of Ptp1 results in increased signaling through these pathways, suggesting that this tyrosine phosphatase, like Ptp2 and Ptp3, plays a downregulatory role on both MAPKs.


Assuntos
Parede Celular/metabolismo , Fosfatases de Especificidade Dupla , Sistema de Sinalização das MAP Quinases , Fosfoproteínas Fosfatases , Proteínas Tirosina Fosfatases , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
PLoS One ; 9(1): e85390, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465549

RESUMO

Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Fosfatase 1 de Especificidade Dupla/classificação , Fosfatase 1 de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/classificação , Fosfatases de Especificidade Dupla/genética , Citometria de Fluxo , Immunoblotting , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Mutação , Fosforilação , Filogenia , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/classificação , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos
14.
J Biol Chem ; 286(49): 42037-42050, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22006927

RESUMO

MAPK phosphatases (MKPs) are negative regulators of signaling pathways with distinct MAPK substrate specificities. For example, the yeast dual specificity phosphatase Msg5 dephosphorylates the Fus3 and Slt2 MAPKs operating in the mating and cell wall integrity pathways, respectively. Like other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains. These include D-motifs, which contain basic residues that interact with acidic residues in the common docking (CD) domain of MAPKs. Here we show that Msg5 interacts not only with Fus3, Kss1, and Slt2 but also with the pseudokinase Slt2 paralog Mlp1. Using yeast two-hybrid and in vitro interaction assays, we have identified distinct regions within the N-terminal domain of Msg5 that differentially bind either the MAPKs Fus3 and Kss1 or Slt2 and Mlp1. Whereas a canonical D-site within Msg5 mediates interaction with the CD domains of Fus3 and Kss1, a novel motif ((102)IYT(104)) within Msg5 is involved in binding to Slt2 and Mlp1. Furthermore, mutation of this site prevents the phosphorylation of Msg5 by Slt2. This motif is conserved in Sdp1, another MKP that dephosphorylates Slt2, as well as in Msg5 orthologs from other yeast species. A region spanning amino acids 274-373 within Slt2 and Mlp1 mediates binding to this Msg5 motif in a CD domain-independent manner. In contrast, Slt2 uses its CD domain to bind to its upstream activator Mkk1. This binding flexibility may allow MAPK pathways to exploit additional regulatory controls in order to provide fine modulation of both pathway activity and specificity.


Assuntos
Proteínas Tirosina Fosfatases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , DNA/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
15.
Mol Genet Genomics ; 285(4): 341-54, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21409566

RESUMO

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Fosfatases de Especificidade Dupla/genética , Ligação Genética , Filogenia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Biocatálise , Fosfatases de Especificidade Dupla/química , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...