Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 6(2): 536-40, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16573057

RESUMO

Hybrid nanostructures consisting of tungsten oxide nanorods with mushroom-shaped carbon caps were grown on electrochemically etched tungsten tips by thermal chemical vapor deposition with methane and argon. These nanorods grow along the radial direction and are very straight and smooth. Electron microscopy revealed a dominant diameter and length of approximately 50 nm and approximately 0.6 microm, respectively. High-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) revealed the presence of crystalline monoclinic W18O49 in the nanorods, and the cap was entirely amorphous carbon. A plausible growth mechanism involves the reduction of tungsten oxide WO3, present on the tungsten surface, by methane at 900 degrees C.


Assuntos
Carbono/química , Nanotecnologia , Óxidos/química , Tungstênio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
2.
J Nanosci Nanotechnol ; 3(1-2): 99-103, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12908236

RESUMO

We have previously shown that high-purity multiwalled carbon nanotubes (pristine MWNTs) can be prepared from a mixture of xylene-ferrocene (99 at% C:1 at% Fe) inside a quartz tube reactor operating at approximately 700 degrees C. In a similar process, approximately 3 g of melamine (C3H6N6) was introduced during the growth of MWNTs to prepare nitrogen-doped nanotubes. The structural and electronic properties of nitrogen-doped MWNTs were determined by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and thermopower measurements. The individual nitrogen-doped nanotube exhibits a bamboo-like structure and comprises 6-16 tube walls, as evidenced by HRTEM studies. The EELS measurements yielded an average nitrogen content of approximately 5 at% in the doped tubes. The thermoelectric power data of nitrogen-doped MWNTs remained negative even after exposure to oxygen for an extended period of time, suggesting that nitrogen doping of MWNTs renders them n-type, consistent with scanning tunneling spectroscopic studies on similar nanotubes.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nitrogênio/química , Condutividade Elétrica , Eletroquímica/métodos , Substâncias Macromoleculares , Teste de Materiais/métodos , Conformação Molecular , Nanotubos de Carbono/isolamento & purificação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA