Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750406

RESUMO

Elevated levels of trace metals (TMs) and heavy/non-essential metals (HnMs) in commonly consumed beverages concern the public and regulatory agencies. Thus, frequent monitoring of these metals is critically important. The present study intended to assess TMs and HnMs concentrations and associated health risks in beverages. Ten metals, such as Mn, Co, Cr, Cu, and Zn (TMs) and Ni, Cd, Pb, Al, and As (HnMs), were quantified in different beverage brands categorized into two groups such as non-carbonated and carbonated beverages. Chemometric analysis such as hierarchical cluster analysis (HCA), Pearson's correlation coefficient (PCC), and principal component analysis (PCA) were also performed to demonstrate the possible natural and anthropogenic sources of metal contamination. Among the TMs, the mean concentration of Zn (233.3 ± 3.3-291.7 ± 3.2 µg/L) followed by Mn (119.0 ± 2.3-146.4 ± 2.2 µg/L) was found highest in both carbonated and non-carbonated beverage samples. In the case of HnMs, the lowest mean concentration of Cd (7.4 ± 0.9-18.6 ± 1.2 µg/L) followed by Pb (4.1 ± 0.4-4.5 ± 0.4 µg/L) was observed in both types of beverage samples. The tolerable dietary intake (TDI) value for Ni and provisional tolerable monthly intake (PTMI) value for Cd were higher than the value established by the WHO and EFSA. The computed values of the hazard index (HI < 1) and the cumulative cancer risk (CCR) indicated a low risk of exposure.

2.
RSC Adv ; 9(64): 37274-37286, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542249

RESUMO

A highly operative and inexpensive water oxidation scheme using an efficient nanoscale electrocatalyst is vastly demanded for optimum H2 production, CO2 reduction, and has attracted increased attention for chemical energy conversion. We present here a simple route to make efficient electrocatalytic colloidal nanoparticles of nickel out of mere metal ions in a simple borate buffer system. The simple and annealed Ni-colloidal nanoparticles (Ni-CNPs) resulted in a facile transformation into ultrafine films, which further activated the catalysts, while initiating OER just at the overpotential η = 250 mV (1.48 V vs. RHE) under benign conditions. They also showed high porosity and favorable kinetics while displaying impressive Tafel slopes of just 51 mV dec-1, and a high TOF value of 0.79 s-1 at 0.35 V was observed for Ni-CNPs/FTO500. These electrocatalysts also showed long-term stability during the bulk water electrolysis experiment conducted for a continuous 20 hours without notable catalytic degradation, which ensures their economic benefits. The electrochemical data, CVs, kinetic study, short-term durability, extended catalytic stability, SEM analysis, and other supporting data provide compelling evidence that these non-precious, metal-based, electroactive, catalytic, colloidal thin-films (simple and annealed) with nanoscale morphological attributes presented promising catalytic performance under the conditions used herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA