Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci (Camb) ; 9(10): 2487-2500, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38013896

RESUMO

Bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) present numerous benefits for the removal and recovery of heavy metals from industrial and municipal wastewater. This study evaluated the life cycle environmental impact of simultaneous hexavalent chromium (Cr(vi)) removal and bioelectricity generation in a dual chamber MFC. Results indicate a global warming potential (GWP) of -0.44 kg carbon dioxide (CO2)-eq. per kg of chromium recovered, representing a total saving of up to 97% in comparison with existing technologies for the treatment of Cr(vi) laden wastewater. The observed savings in GWP (kg CO2-eq.) reduced to 61.8% with the removal of the allocated credits from the MFC system's life cycle. Of all the various sub-systems considered within the chromium waste treatment plant, the MFC unit and the chromium metal recovery unit had the largest impact in terms of GWP (kg CO2-eq.), non-renewable energy use (NREU) (MJ primary), and mineral extraction (MJ surplus). A statistical analysis of the results showed that an increase in chemical oxygen demand (COD) was associated with a reduction in GWP (kg CO2-eq.), NREU (MJ primary), and terrestrial ecotoxicity (kg triethylene glycol equivalents into soil (TEG soil)-eq.). The life cycle assessment (LCA) output showed a high sensitivity to changes in the materials and construction processes of MFC reactors, indicating the need for further research into sustainable materials for MFC reactor construction. The observed interaction effects of process variables also suggest the need for combined optimization of these variables. Analysis with other types of metals is also important to further demonstrate the practical viability of metal removal through MFCs.

2.
Int J Life Cycle Assess ; 28(5): 566-589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077273

RESUMO

Purpose: Carbon fibre-reinforced composite materials offer superior mechanical properties and lower weight than conventional metal products. However, relatively, little is known about the environmental impacts and economic costs associated with composite products displacing conventional metal products. The purpose of this study is to develop an integrated life cycle assessment and life cycle costing framework for composite materials in the aviation industry. Methods: An integrated life cycle assessment (LCA) and life cycle costing (LCC) framework has been developed. The displacement of a conventional aluminium door for an aircraft by a composite door is presented as an example of the use of this framework. A graphical visualisation tool is proposed to model the integrated environmental and economic performances of this displacement. LCA and LCC models for composite applications are developed accordingly. The environmental hotspots are identified, and the sensitivity of the environmental impact results to the different composite waste treatment routes is performed. Subsequently, the research suggests a learning curve to analyse the unit price for competitive mass production. Sensitivity analysis and Monte Carlo simulation have been applied to demonstrate the cost result changes caused by data uncertainty. Results: Energy consumption was the hotspot, and the choice of composite waste treatment routes had a negligible effect on the LCA outcomes. Concerning the costs, the most significant cost contribution for the unit door production was labour. The future door production cost was decreased by about 29% based on the learning curve theory. The uncertainties associated with the variables could lead to variations in the production cost of up to about 16%. The comparison between the two doors shows that the composite door had higher potential environmental impacts and cost compared to the conventional aluminium door during the production stage. However, the composite door would have better environmental and financial performance if a weight reduction of 47% was achieved in future designs. Conclusions: The proposed framework and relevant analysis models were applied through a case study in the aerospace industry, creating a site-specific database for the community to support material selection and product development. The graphical tool was proved to be useful in representing a graphical visualisation comparison based on the integration of the LCA and LCC results of potential modifications to the composite door against the reference door, providing understandable information to the decision-makers. Supplementary Information: The online version contains supplementary material available at 10.1007/s11367-023-02164-y.

3.
J Environ Manage ; 336: 117684, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924711

RESUMO

Environmental rating ecolabels are a new generation of ecolabels. They are intended to enable consumers to compare the environmental impacts of multiple products and make more sustainable consumption choices. Falling outside of the three types defined in the ISO 14020 environmental label and declarations series, the recent proliferation of these business-to-consumer communication instruments has resulted in the creation of a plethora of methodologies to derive product performance ratings. Interest from consumers wanting more information on the products they purchase, as well as the promise of policy instruments aiming to increase transparency and combat greenwashing, are fuelling further multiplication of schemes. A move towards more credible, evidence-based environmental rating ecolabels is therefore urgently needed to promote assessment based on scientific understanding, gain consumer trust, and realise policy objectives. We propose a framework based on four core principles - i) relevance, ii) scientific robustness, iii) trust and transparency, and iv) feasibility (scalability, affordability) - with 18 guidelines that can be followed by rating scheme developers. We characterise the rise of environmental rating ecolabels in geographical Europe and build an inventory of 33 existing schemes, at various stages of development and implementation, to which we apply the framework. This reveals the potential for significant improvement in current schemes, indicating important areas for development. The framework provides a valuable guide for the development of new schemes or an evaluation grid for existing initiatives.


Assuntos
Comércio , Meio Ambiente , Europa (Continente) , Comunicação , Comportamento do Consumidor
4.
Sci Rep ; 12(1): 13741, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962008

RESUMO

Microbial electrosynthesis (MES), is an emerging technology, for sustainable wastewater treatment. The dilute acetate solution, produced via MES, must be recovered, as dilute solutions can be expensive to store and transport. The acetate is expensive and environmentally damaging to recover by heat-intensive evaporative methods, such as distillation. In pursuit of a better energy economy, a membrane separation system is simulated to raise the concentration from 1 to 30 wt%, at a hydraulic pressure of approximately 50 bar. The concentrate is then simulated to be heat dried. Reverse osmosis (RO) could rase the acetate concentration to 8 wt%. A novel adaptation of osmotically assisted reverse osmosis (OARO) is then simulated to increase the concentration from 8 to 30 wt%. The inclusion of OARO, rather than a standalone RO unit, reduces the total heat and electric power requirement by a factor of 4.3. It adds to the membrane area requirement by a factor of 6. The OARO simulations are conducted by the internal concentration polarisation (ICP) model. Before the model is used, it is fitted to OARO experimental data, obtained from the literature. Membrane structure number of 701 µm and permeability coefficient of 2.51 L/m2/h/bar are ascertained from this model fitting exercise.


Assuntos
Membranas Artificiais , Purificação da Água , Destilação , Filtração , Osmose , Soluções
5.
RSC Adv ; 11(17): 9921-9932, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423508

RESUMO

Microbial electrosynthesis (MES) is an innovative technology for electricity driven microbial reduction of carbon dioxide (CO2) to useful multi-carbon compounds. This study assesses the cradle-to-gate environmental burdens associated with acetic acid (AA) production via MES using graphene functionalized carbon felt cathode. The analysis shows that, though the environmental impact for the production of the functionalized cathode is substantially higher when compared to carbon felt with no modification, the improved productivity of the process helps in reducing the overall impact. It is also shown that, while energy used for extraction of AA is the key environmental hotspot, ion-exchange membrane and reactor medium (catholyte & anolyte) are other important contributors. A sensitivity analysis, describing four different scenarios, considering either continuous or fed-batch operation, is also described. Results show that even if MES productivity can be theoretically increased to match the highest space time yield reported for acetogenic bacteria in a continuous gas fermenter (148 g L-1 d-1), the environmental impact of AA produced using MES systems would still be significantly higher than that produced using a fossil-based process. Use of fed-batch operation and renewable (solar) energy sources do help in reducing the impact, however, the low production rates and overall high energy requirement makes large-scale implementation of such systems impractical. The analysis suggests a minimum threshold production rate of 4100 g m-2 d-1, that needs to be achieved, before MES could be seen as a sustainable alternative to fossil-based AA production.

6.
Sci Rep ; 10(1): 8407, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439969

RESUMO

We present a correlation for determining the power density of microbial fuel cells based on dimensional analysis. Important operational, design and biological parameters are non-dimensionalized using a selection of scaling variables. Experimental data from various microbial fuel cell studies operating over a wide range of system parameters are analyzed to attest accuracy of the model in predicting power output. The correlation predicts nonlinear dependencies between power density, substrate concentration, solution conductivity, external resistance, and electrode spacing. The straightforward applicability without the need for any significant computational resources, while preserving good level of accuracy; makes this correlation useful in focusing the experimental effort for the design and optimization of microbial fuel cells.

7.
Phys Chem Chem Phys ; 21(20): 10761-10772, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086930

RESUMO

This study describes and evaluates a dynamic computational model for a two chamber microbial electrosynthesis (MES) system. The analysis is based on redox mediators and a two population model, describing bioelectrochemical kinetics at both anode and cathode. Mass transfer rates of the substrate and bacteria in the two chambers are combined with the kinetics and Ohm's law to derive an expression for the cell current density. The effect of operational parameters such as initial substrate concentration at the anode and cathode and the operation cycle time on MES performance is evaluated in terms of product formation rate, substrate consumption and coulombic efficiency (CE). For a fixed operation cycle time of 3 or 4 days, the anode and cathode initial substrate concentrations show linear relationship with product formation rate; however MES operation with a 2 day cycle time shows a more complex behaviour, with acetic acid production rates reaching a plateau and even a slight decrease at higher concentrations of the two substrates. It is also shown that there is a trade-off between product formation rate and substrate consumption and CE. MES performance for operation with cycle time being controlled by substrate consumption is also described. Results from the analysis demonstrate the interdependence of the system parameters and highlight the importance of multi-objective system optimization based on targeted end-use.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Eletroquímica/instrumentação , Reatores Biológicos , Eletrodos
8.
J Hazard Mater ; 371: 18-26, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844646

RESUMO

Copper recovery from distillery effluent was studied in a scalable bioelectro-chemical system with approx. 6.8 L total volume. Two control strategies based on the control of power with maximum power point tracking (MPPT) and the application of 0.5 V using an external power supply were used to investigate the resultant modified electroplating characteristics. The reactor system was constructed from two electrically separated, but hydraulically connected cells, to which the MPPT and 0.5 V control strategies were applied. Three experiments were carried out using a relatively high copper concentration i.e. 1000 mg/L followed by a lower concentration i.e. 50 mg/L, with operational run times defined to meet the treatment requirements for distillery effluents considered. Real distillery waste was introduced into the cathode to reduce ionic copper concentrations. This waste was then recirculated to the anode as a feed stock after the copper depletion step, in order to test the bioenergy self-sustainability of the system. Approx. 60-95% copper was recovered in the form of deposits depending on starting concentration. However, the recovery was low when the anode was supplied with copper depleted distillery waste. Through process control (MPPT or 0.5 V applied voltage) the amount and form of the copper recovered could be manipulated.

9.
Bioresour Technol ; 255: 39-49, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414171

RESUMO

A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g-1 for its production rate of 0.094-0.26 kg yr-1 and a COD removal rate of 0.038-0.106 kg yr-1. The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg-1 HCOOH saving.


Assuntos
Análise da Demanda Biológica de Oxigênio , Formiatos , Águas Residuárias , Fontes de Energia Bioelétrica , Eletricidade , Eletrodos
10.
Int J Life Cycle Assess ; 23(9): 1744-1760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956413

RESUMO

PURPOSE: The aim of the paper is to assess the role and effectiveness of a proposed novel strategy for Life Cycle Inventory (LCI) data collection in the food sector and associated supply chains. The study represents one of the first of its type and provides answers to some of the key questions regarding the data collection process developed, managed and implemented by a multinational food company across the supply chain. METHODS: An integrated LCI data collection process for confectionery products was developed and implemented by Nestlé, a multinational food company. Some of the key features includes (1) management and implementation by a multinational food company; (2) types of roles to manage, provide and facilitate data exchange; (3) procedures to identify key products, suppliers and customers; (4) LCI questionnaire and cover letter and (5) data quality management based on the pedigree matrix. Overall, the combined features in an integrated framework provide a new way of thinking about the collection of LCI data from the perspective of a multinational food company. RESULTS AND DISCUSSION: The integrated LCI collection framework spanned across 5 months and resulted in 87 new LCI datasets for confectionery products from raw material, primary resource use, emission and waste release data collected from suppliers across 19 countries. The data collected was found to be of medium to high quality compared with secondary data. However, for retailers and waste service companies, only partially completed questionnaires were returned. Some of the key challenges encountered during the collection and creation of data included lack of experience, identifying key actors, communication and technical language, commercial compromise, confidentiality protection and complexity of multi-tiered supplier systems. A range of recommendations are proposed to reconcile these challenges which include standardisation of environmental data from suppliers, concise and targeted LCI questionnaires and visualising complexity through drawings. CONCLUSIONS: The integrated LCI data collection process and strategy has demonstrated the potential role of a multinational company to quickly engage and act as a strong enabler to unlock latent data for various aspects of the confectionery supply chain. Overall, it is recommended that the research findings serve as the foundations to transition towards a standardised procedure which can practically guide other multinational companies to considerably increase the availability of LCI data.

11.
Bioresour Technol ; 243: 135-146, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28651133

RESUMO

This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO2 equivalent per MJ of grid electricity offset, respectively.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Resíduos Sólidos , Resíduos de Alimentos , Metais
12.
J Environ Manage ; 199: 116-125, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28527738

RESUMO

Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs.


Assuntos
Compostos Férricos , Energia Renovável , Meio Ambiente , Óxido Ferroso-Férrico , Indústrias
13.
Bioresour Technol ; 215: 131-143, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27085988

RESUMO

This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).


Assuntos
Ácidos Levulínicos/síntese química , Biocombustíveis , Carvão Vegetal/química , Resíduos de Alimentos , Lignina/química , Metais/química , Reciclagem , Resíduos Sólidos , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...