Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 600: 120442, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675925

RESUMO

3D printing of oral solid dosage forms is a recently introduced approach for dose personalisation. Fused deposition modelling (FDM) is one of the promising and heavily researched 3D printing techniques in the pharmaceutical field. However, the successful application of this technique relies greatly on the mass manufacturing of physically and chemically stable filaments, that can be readily available as a shelf item to be 3D printed on-demand. In this work, the stability of methacrylate polymers (Eudragit EPO, RL, L100-55 and S100), hydroxypropyl cellulose (HPC SSL) and polyvinyl pyrrolidone (PVP)-based filaments over 6 months were investigated. Filaments manufactured by hot melt extrusion (HME) were stored at either 5 °C or 30 °C + 65 %RH with/without vacuuming. The effects of storage on their dimensions, visual appearance, thermal properties, and 'printability' were analysed. Theophylline content, as well as in vitro release from the 3D printed tablets were also investigated. The filaments were analysed before storage, then after 1, 3 and 6 months from the manufacturing date. Storing the filaments at these conditions had a significant effect on their physical properties, such as shape, dimensions, flexibility and hence compatibility with FDM 3D printing. In general, the methacrylate-based filaments were more physically stable and compatible with FDM 3D printing following storage. Owing to their hygroscopic nature, cellulose- and PVP-based filaments demonstrated a reduction in their glass transition temperature upon storage, leading to increased flexibility and incompatibility with FDM 3D printer. Theophylline contents was not significantly changed during the storage. This work provides preliminary data for the impact of polymer species on the long-term stability of filaments. In general, storage and packaging conditions have a major impact on the potential of on-demand manufacturing of 3D printed tablets using hot melt extruded filaments.


Assuntos
Excipientes , Teofilina , Liberação Controlada de Fármacos , Impressão Tridimensional , Comprimidos
2.
Eur J Pharm Sci ; 123: 484-494, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30041029

RESUMO

There is an increased evidence for treating hypertension by a combination of two or more drugs. Increasing the number of daily intake of tablets has been reported to negatively affect the compliance of patients. Therefore, numerous fixed dose combinations (FDCs) have been introduced to the market. However, the inherent rigid nature of FDCs does not allow the titration of the dose of each single component for an individual patient's needs. In this work, flexible dose combinations of two anti-hypertensive drugs in a single bilayer tablet with a range of doses were fabricated using dual fused deposition modelling (FDM) 3D printer. Enalapril maleate (EM) and hydrochlorothiazide (HCT) loaded filaments were produced via hot-melt extrusion (HME). Computer software was utilised to design sets of oval bi-layer tablets of individualised doses. Thermal analysis and x-ray diffractometer (XRD) indicated that HCT remained crystalline in the polymeric matrix whilst EM appeared to be in an amorphous form. The interaction between anionic EM and cationic methacrylate polymer may have contributed to a drop in the glass transition temperature (Tg) of the filament and obviated the need for a plasticiser. Across all tablet sets, the methacrylate polymeric matrix provided immediate drug release profiles. This dynamic dosing system maintained the advantages of FDCs while providing a superior flexibility of dosing range, hence offering an optimal clinical solution to hypertension therapy in a patient-centric healthcare service.


Assuntos
Anti-Hipertensivos/química , Química Farmacêutica/métodos , Enalapril/química , Hidroclorotiazida/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Administração Oral , Anti-Hipertensivos/administração & dosagem , Cristalização , Portadores de Fármacos/química , Combinação de Medicamentos , Composição de Medicamentos , Liberação Controlada de Fármacos , Enalapril/administração & dosagem , Hidroclorotiazida/administração & dosagem , Cinética , Ácidos Polimetacrílicos/química , Solubilidade , Comprimidos
3.
J Control Release ; 269: 355-363, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29146240

RESUMO

Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥0.6mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6mm) were more efficient at accelerating drug release than longer channels (18.2mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures.


Assuntos
Comprimidos/química , Liberação Controlada de Fármacos , Hidroclorotiazida/química , Ácidos Polimetacrílicos/química , Impressão Tridimensional , Tecnologia Farmacêutica
4.
Int J Pharm ; 513(1-2): 659-668, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27640246

RESUMO

This work aims to employ fused deposition modelling 3D printing to fabricate immediate release pharmaceutical tablets with several model drugs. It investigates the addition of non-melting filler to methacrylic matrix to facilitate FDM 3D printing and explore the impact of (i) the nature of filler, (ii) compatibility with the gears of the 3D printer and iii) polymer: filler ratio on the 3D printing process. Amongst the investigated fillers in this work, directly compressible lactose, spray-dried lactose and microcrystalline cellulose showed a level of degradation at 135°C whilst talc and TCP allowed consistent flow of the filament and a successful 3D printing of the tablet. A specially developed universal filament based on pharmaceutically approved methacrylic polymer (Eudragit EPO) and thermally stable filler, TCP (tribasic calcium phosphate) was optimised. Four model drugs with different physicochemical properties were included into ready-to-use mechanically stable tablets with immediate release properties. Following the two thermal processes (hot melt extrusion (HME) and fused deposition modelling (FDM) 3D printing), drug contents were 94.22%, 88.53%, 96.51% and 93.04% for 5-ASA, captopril, theophylline and prednisolone respectively. XRPD indicated that a fraction of 5-ASA, theophylline and prednisolone remained crystalline whilst captopril was in amorphous form. By combining the advantages of thermally stable pharmaceutically approved polymers and fillers, this unique approach provides a low cost production method for on demand manufacturing of individualised dosage forms.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Impressão Tridimensional , Comprimidos/química , Fosfatos de Cálcio/química , Captopril/química , Celulose/química , Liberação Controlada de Fármacos , Humanos , Lactose/química , Mesalamina/química , Ácidos Polimetacrílicos/química , Prednisolona/química , Talco/química , Teofilina/química
5.
Pharm Res ; 33(8): 1817-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27194002

RESUMO

The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such an extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry.


Assuntos
Formas de Dosagem , Composição de Medicamentos/tendências , Impressão Tridimensional/tendências , Tecnologia Farmacêutica/tendências , Composição de Medicamentos/métodos , Humanos , Medicina de Precisão/tendências , Comprimidos , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...