Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 142(10): 2715-2723.e2, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007559

RESUMO

Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen. The transfer of antibodies against murine type VII collagen into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, is critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Interestingly, C5ar2-/- mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 in disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced intracellular calcium flux, ROS release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency lowered the ratio of activating and inhibitory FcγRs, impeding the sustainment of inflammation. Collectively, we show here a proinflammatory contribution of C5aR2 in the pathogenesis of antibody-induced tissue damage in experimental EBA.


Assuntos
Epidermólise Bolhosa Adquirida , Animais , Complexo Antígeno-Anticorpo , Autoanticorpos , Cálcio/metabolismo , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo
2.
Biochem Pharmacol ; 65(5): 773-81, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12628491

RESUMO

We have recently reported that flavonoids of cocoa inhibit the mammalian 15-lipoxygenase-1-a catalyst of enzymatic lipid peroxidation. To elucidate the structure-activity relationship of the inhibitory effect, we investigated the effects of 18 selected flavonoids of variable structure on pure rabbit reticulocyte and soybean 15-lipoxygenases using linoleic acid as substrate. Moreover, the inhibition by quercetin was studied in detail to gain insight into the mode of action. Quercetin was found to modulate the time-course of the reaction of both lipoxygenases by three distinct effects: (i) prolongation of the lag period, (ii) rapid decrease in the initial rate after the lag phase was overcome, (iii) time-dependent inactivation of the enzyme during reaction but not in the absence of substrate. A comparison of the IC(50) for the rapid inhibition of rabbit reticulocyte 15-lipoxygenase-1 revealed that (i) the presence of a hydroxyl group in the flavonoid molecule is not essential, (ii) a catechol arrangement reinforces the inhibitory effect, (iii) in the presence of a catechol arrangement the inhibitory potency inversely correlates with the number of hydroxyl groups, (iv) a 2,3-double bond in the C ring strengthens the inhibitory effect. The flavone luteolin turned out to be the most potent inhibitor of the mammalian enzyme with an IC(50) of 0.6 microM followed by baicalein (1 microM) and fisetin (1.5 microM).


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Inibidores de Lipoxigenase , Animais , Inibidores Enzimáticos/química , Flavonoides/química , Cinética , Quercetina/química , Quercetina/farmacologia , Coelhos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA