Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6122, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033164

RESUMO

Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets-by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of ß-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials.

2.
Adv Mater ; 33(34): e2102039, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34270846

RESUMO

Borophene, the lightest among all Xenes, possesses extreme electronic mobility along with high carrier density and high Young's modulus. To accomplish device-quality borophene, novel approaches of realization of monolayers need to be urgently explored. In this work, micromechanical exfoliation is discovered to result in mono- and few-layered borophene of device quality. Borophene sheets are successfully fabricated down to monolayer thickness. Distinct crystallographic phases of borophene viz. XRD study reveals crystallographic phase transition from rhombohedral to several other eigen phases of borophene. The role of the destination substrates is held crucial in determining the final phase of the transferred sheet. The exfoliation energy is calculated by density functional theory. Molecular dynamics simulations are used to simulate the exfoliation process. Heterolayers of borophene, with black phosphorene (BP) or with molybdenum disulfide (MoS2 ) atomic sheets, are found to result in photoexcited coupling quantum states. Gold-coated borophene bestows promising anchoring capability for surface-enhanced Raman spectroscopy (SERS). Successful demonstration of the electronic behavior of micromechanically exfoliated borophene and excitonic behavior of borophene-based heterolayers will guide future generation devices not only in electronics and excitonics, but also in thermal management, electronic packaging, hydrogen storage, hybrid energy storage, and clean energy solutions.

3.
Nanoscale Res Lett ; 9(1): 374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170326

RESUMO

A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA