Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 25(2): 78-88, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27000416

RESUMO

AIM: We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS: At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION: These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio Atordoado/metabolismo , Tiorredoxinas/metabolismo , Disfunção Ventricular/metabolismo , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio Atordoado/genética , Consumo de Oxigênio , Tiorredoxinas/genética , Disfunção Ventricular/genética
2.
Oncotarget ; 7(11): 11889-98, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933812

RESUMO

Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3ß were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3ß increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3ß phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3ß.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo , Tiorredoxinas/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Fosforilação , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA