Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(20): 6290-6302, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37624769

RESUMO

Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.


Assuntos
Plaquetas , Ativação Plaquetária , Plaquetas/metabolismo , Retração do Coágulo , Fosforilação Oxidativa , Mitocôndrias/metabolismo
2.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159213

RESUMO

The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.


Assuntos
Quinases Lim , Proteínas Quinases , Fatores de Despolimerização de Actina/metabolismo , Animais , Quinases Lim/metabolismo , Fosforilação , Filogenia , Proteínas Quinases/metabolismo
4.
Cells ; 10(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800866

RESUMO

Primary hemostasis consists in the activation of platelets, which spread on the exposed extracellular matrix at the injured vessel surface. Secondary hemostasis, the coagulation cascade, generates a fibrin clot in which activated platelets and other blood cells get trapped. Active platelet-dependent clot retraction reduces the clot volume by extruding the serum. Thus, the clot architecture changes with time of contraction, which may have an important impact on the healing process and the dissolution of the clot, but the precise physiological role of clot retraction is still not completely understood. Since platelets are the only actors to develop force for the retraction of the clot, their distribution within the clot should influence the final clot architecture. We analyzed platelet distributions in intracoronary thrombi and observed that platelets and fibrin co-accumulate in the periphery of retracting clots in vivo. A computational mechanical model suggests that asymmetric forces are responsible for a different contractile behavior of platelets in the periphery versus the clot center, which in turn leads to an uneven distribution of platelets and fibrin fibers within the clot. We developed an in vitro clot retraction assay that reproduces the in vivo observations and follows the prediction of the computational model. Our findings suggest a new active role of platelet contraction in forming a tight fibrin- and platelet-rich boundary layer on the free surface of fibrin clots.


Assuntos
Coagulação Sanguínea , Plaquetas/química , Fibrina/química , Trombose Intracraniana/patologia , Modelos Estatísticos , Fenômenos Biomecânicos , Plaquetas/patologia , Retração do Coágulo , Simulação por Computador , Fibrina/ultraestrutura , Humanos , Trombose Intracraniana/cirurgia , Intervenção Coronária Percutânea/métodos
5.
Platelets ; 32(4): 568-572, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32362199

RESUMO

The discoid shape of resting platelets is maintained by a peripheral, circular bundle of microtubules called marginal band. Marginal band microtubules are acetylated on lysine 40 of the alpha-tubulin subunits. We have previously shown that the deacetylase HDAC6 is responsible for tubulin deacetylation in platelets and that the hyperacetylated state of the microtubules in HDAC6KO platelets correlates with faster activation/spreading kinetics, pointing to a regulatory role of this modification. So far, the question about the reverse enzyme, responsible for tubulin acetylation in platelets, has remained unanswered. Several enzymes have been described as having tubulin acetylation activity. Here we identify αTAT1 as the enzyme responsible for the acetylation of marginal band microtubules. We show that αTAT1 deficiency has only minor consequences for platelet production and function. A residual tubulin acetylation level in αTAT1 deficient platelet lysates suggests the presence of an additional tubulin-acetylating enzyme that is unable to acetylate marginal band microtubules.


Assuntos
Acetiltransferases/metabolismo , Microtúbulos/metabolismo , Animais , Humanos , Camundongos
6.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781579

RESUMO

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for pharmaceutics which could potentiate its therapeutic effect. We screened a chemical library and selected Carba1, a carbazole, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. Catastrophe induction by Carba1 promotes paclitaxel binding to microtubule ends, providing a mechanistic explanation of the observed synergy. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel binding to dynamic microtubules can be transposed to in vivo mouse cancer treatments, paving the way for new therapeutic strategies combining low doses of microtubule targeting agents with opposite mechanisms of action.

7.
Front Pharmacol ; 11: 543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425788

RESUMO

Agents able to modify microtubule dynamics are important anticancer drugs. The absence of microtubules resulting from drug-induced depolymerization is easy to detect. However the detection of a stabilized microtubule network needs specific assays since there is not a significant visual difference between normal and stabilized microtubule networks. Here, we describe a quantitative cell-based assay, suitable for automation, which allows the detection of stabilized microtubules without the need of microscopic examination. The rationale of this assay is based on the drug-induced resistance of the microtubule network to the depolymerizing agent combretastatin A4 and the subsequent detection of the residual microtubules by immunoluminescence. Using this assay to screen a kinase inhibitor library allowed the selection of seven known kinase inhibitors: selonsertib, masatinib, intedanib, PF0477736, SNS-314 mesylate, MPI0479605, and ponatinib. The yet undescribed ability of these inhibitors to stabilize cellular microtubules was confirmed using additional markers of stable microtubules and time-lapse video-microscopy to track individual microtubules in living cells. None of the compounds interacted, however, directly with tubulin. By employing other inhibitors of the same kinases, which have structurally unrelated scaffolds, we determined if the microtubule stabilizing effect was due to the inhibition of the targeted kinase, or to an off-target effect. Many of these inhibitors are clinically approved or currently assayed in phase 2 or phase 3 clinical trials. Their microtubule-stabilizing effect may account for their therapeutic effect as well as for some of their adverse side effects. These results indicate also a possible repurposing of some of these drugs.

8.
Cells ; 9(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443494

RESUMO

(1) Background: Platelets were postulated to constitute the trigger of liver regeneration. The aim of this study was to dissect the cellular interactions between the various liver cells involved in liver regeneration and to clarify the role of platelets. (2) Methods: Primary mouse liver sinusoidal endothelial cells (LSECs) were co-incubated with increasing numbers of resting platelets, activated platelets, or platelet releasates. Alterations in the secretion of growth factors were measured. The active fractions of platelet releasates were characterized and their effects on hepatocyte proliferation assessed. Finally, conditioned media of LSECs exposed to platelets were added to primary hepatic stellate cells (HSCs). Secretion of hepatocyte growth factor (HGF) and hepatocyte proliferation were measured. After partial hepatectomy in mice, platelet and liver sinusoidal endothelial cell (LSEC) interactions were analyzed in vivo by confocal microscopy, and interleukin-6 (IL-6) and HGF levels were determined. (3) Results: Co-incubation of increasing numbers of platelets with LSECs resulted in enhanced IL-6 secretion by LSECs. The effect was mediated by the platelet releasate, notably a thermolabile soluble factor with a molecular weight over 100 kDa. The conditioned medium of LSECs exposed to platelets did not increase proliferation of primary hepatocytes when compared to LSECs alone but stimulated hepatocyte growth factor (HGF) secretion by HSCs, which led to hepatocyte proliferation. Following partial hepatectomy, in vivo adhesion of platelets to LSECs was significantly increased when compared to sham-operated mice. Clopidogrel inhibited HGF secretion after partial hepatectomy. (4) Conclusion: Our findings indicate that platelets interact with LSECs after partial hepatectomy and activate them to release a large molecule of protein nature, which constitutes the initial trigger for liver regeneration.


Assuntos
Plaquetas/citologia , Comunicação Celular , Células Endoteliais/citologia , Células Estreladas do Fígado/citologia , Hepatócitos/citologia , Fígado/citologia , Animais , Plaquetas/metabolismo , Adesão Celular , Proliferação de Células , Micropartículas Derivadas de Células/metabolismo , Grânulos Citoplasmáticos/metabolismo , Células Endoteliais/metabolismo , Hepatectomia , Células Estreladas do Fígado/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Interleucina-6/metabolismo , Macrófagos/citologia , Masculino , Camundongos Endogâmicos C57BL , Ativação Plaquetária
9.
Platelets ; 31(5): 551-558, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31880193

RESUMO

Although live imaging of dynamic processes in platelets is a challenging task, several important observations have been published during the last 20 years. We will discuss the amazing insights that have been achieved, the difficulties that can be encountered as well as some questions still open and the future technical perspectives.


Assuntos
Plaquetas/metabolismo , Diagnóstico por Imagem/métodos , Proteínas de Fluorescência Verde/metabolismo , Animais , Plaquetas/citologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
10.
Hepatol Commun ; 3(7): 855-866, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31304449

RESUMO

Beyond their role in hemostasis, platelets are proposed as key mediators of several physiological and pathophysiological processes of the liver, such as liver regeneration, toxic or viral acute liver injury, liver fibrosis, and carcinogenesis. The effects of platelets on the liver involve interactions with sinusoidal endothelial cells and the release of platelet-contained molecules following platelet activation. Platelets are the major source of circulating extracellular vesicles, which are suggested to play key roles in platelet interactions with endothelial cells in several clinical disorders. In the present review, we discuss the implications of platelet-derived extracellular vesicles in physiological and pathophysiological processes of the liver.

11.
Med Sci (Paris) ; 34(12): 1047-1055, 2018 Dec.
Artigo em Francês | MEDLINE | ID: mdl-30623774

RESUMO

Microtubules are cytoskeletal fibers formed by the assembly of α- and ß-tubulin heterodimers. They contribute to cell morphology, mobility and polarity, as well as to cellular transport processes and cell division. The microtubular network constantly adapts to cellular needs and may be composed of very dynamic or more stable microtubules. To regulate their diverse functions in a spatio-temporal manner, microtubules are subjected to numerous reversible post-translational modifications, which generate the "tubulin code". This review focuses on two modifications characteristic of stable microtubules - acetylation and detyrosination of α-tubulin - and their deregulation in certain pathologies.


Assuntos
Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Acetilação , Animais , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/fisiologia
12.
Oncotarget ; 8(25): 41749-41763, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28445157

RESUMO

LIM kinases are common downstream effectors of several signalization pathways and function as a signaling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. These last 10 years, several reports indicate that the functions of LIM kinases are more extended than initially described and, specifically, that LIM kinases also control microtubule dynamics, independently of their regulation of actin microfilament. In this review we analyze the data supporting these conclusions and the possible mechanisms that could be involved in the control of microtubules by LIM kinases. The demonstration that LIM kinases also control microtubule dynamics has pointed to new therapeutic opportunities. Consistently, several new LIM kinase inhibitors have been recently developed. We provide a comprehensive comparison of these inhibitors, of their chemical structure, their specificity, their cellular effects as well as their effects in animal models of various diseases including cancer.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Citoesqueleto/metabolismo , Quinases Lim/metabolismo , Microtúbulos/metabolismo , Humanos
13.
Biochem J ; 473(13): 1859-68, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27354562

RESUMO

Tubulin heterodimers are the building block of microtubules, which are major elements of the cytoskeleton. Several types of post-translational modifications are found on tubulin subunits as well as on the microtubule polymer to regulate the multiple roles of microtubules. Acetylation of lysine 40 (K40) of the α-tubulin subunit is one of these post-translational modifications which has been extensively studied. We summarize the current knowledge about the structural aspects of K40 acetylation, the functional consequences, the enzymes involved and their regulation. Most importantly, we discuss the potential importance of the recently discovered additional acetylation acceptor lysines in tubulin subunits and highlight the urgent need to study tubulin acetylation in a more integrated perspective.


Assuntos
Lisina/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Humanos , Lisina/química , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos
14.
PLoS One ; 10(10): e0141205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509443

RESUMO

We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese. Relying on this anti-adhesive activity, a Structure-Activity Relationship (SAR) study was established on 20 different compounds to throw the bases of future optimization strategies. Active drugs efficiently inhibit platelet spreading, aggregation, and clot retraction, processes that rely on αllbß3 integrin activation and clustering. In vitro these derivatives interfere with ß3 cytoplasmic tail interaction with kindlin-2 in pulldown assays albeit little effect was observed with pure proteins suggesting that the drugs may block an alternative integrin activation process that may not be directly related to kindlin recruitment. Ex vivo, these drugs blunt integrin signaling assayed using focal adhesion kinase auto-phosphorylation as a read-out. Hence, 3-arylquinoline and 3-aryl-2-quinolone series are a novel class of integrin activation and signaling antagonists.


Assuntos
Integrinas/metabolismo , Quinolonas/metabolismo , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Manganês/farmacologia , Quinolonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
15.
J Cell Biol ; 204(2): 177-85, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24421335

RESUMO

Platelets float in the blood as discoid particles. Their shape is maintained by microtubules organized in a ring structure, the so-called marginal band (MB), in the periphery of resting platelets. Platelets are activated after vessel injury and undergo a major shape change known as disc to sphere transition. It has been suggested that actomyosin tension induces the contraction of the MB to a smaller ring. In this paper, we show that antagonistic microtubule motors keep the MB in its resting state. During platelet activation, dynein slides microtubules apart, leading to MB extension rather than contraction. The MB then starts to coil, thereby inducing the spherical shape of activating platelets. Newly polymerizing microtubules within the coiled MB will then take a new path to form the smaller microtubule ring, in concerted action with actomyosin tension. These results present a new view of the platelet activation mechanism and reveal principal mechanistic features underlying cellular shape changes.


Assuntos
Plaquetas/ultraestrutura , Forma Celular , Microtúbulos/fisiologia , Ativação Plaquetária , Actomiosina/metabolismo , Actomiosina/fisiologia , Actomiosina/ultraestrutura , Plaquetas/citologia , Plaquetas/metabolismo , Células Cultivadas , Dineínas/metabolismo , Dineínas/fisiologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Polimerização
17.
Blood ; 120(20): 4215-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22955928

RESUMO

HDAC6, a major cytoplasmic deacetylase, is shown here to fine-tune the kinetics of platelet activation, a process that must be precisely regulated to ensure hemostasis after blood vessel injury while preventing pathologic thrombus formation. The discoid shape of resting platelets in the circulation is maintained by several highly acetylated microtubules organized in a marginal band. During platelet activation, microtubules undergo major reorganizations, which contribute to the shape change of activating platelets. We show that, during these activation-induced shape changes, a dramatic HDAC6-mediated tubulin deacetylation takes place, followed by microtubule reacetylation in spread platelets. In addition, although HDAC6-controlled tubulin deacetylation is not required for platelet activation, the capacity of HDAC6 to prevent tubulin hyperacetylation influences the speed of platelet spreading. These results are particularly important in view of HDAC6 inhibitors being currently used in clinical trials and represent the first example of cell signaling by lysine acetylation in platelet biology.


Assuntos
Histona Desacetilases/fisiologia , Ativação Plaquetária/fisiologia , Acetilação , Sequência de Aminoácidos , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Plaquetas/ultraestrutura , Forma Celular , Tamanho Celular , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Ativação Plaquetária/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
18.
EMBO J ; 31(18): 3730-44, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22892567

RESUMO

Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.


Assuntos
Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Epilepsias Mioclônicas/metabolismo , Regulação da Expressão Gênica , Transporte Ativo do Núcleo Celular , Animais , Biofísica/métodos , Canais de Cálcio/metabolismo , Eletrofisiologia/métodos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos , Mutação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Receptores alfa dos Hormônios Tireóideos/metabolismo , Transcrição Gênica
19.
J Biomed Biotechnol ; 2011: 970382, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21151618

RESUMO

Reversible posttranslational modification of internal lysines in many cellular or viral proteins is now emerging as part of critical signalling processes controlling a variety of cellular functions beyond chromatin and transcription. This paper aims at demonstrating the role of lysine acetylation in the cytoplasm driving and coordinating key events such as cytoskeleton dynamics, intracellular trafficking, vesicle fusion, metabolism, and stress response.


Assuntos
Citoplasma/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Acetilação , Animais , Humanos , Transdução de Sinais
20.
EMBO J ; 29(17): 2943-52, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20676058

RESUMO

In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4-NUT released p300 and restored p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off-context activity of a testis-specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation.


Assuntos
Cromatina/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Western Blotting , Células COS , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Fatores de Transcrição/genética , Translocação Genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...