Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(6): e3001659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658004

RESUMO

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Assuntos
Endocitose , Sinapses , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Camundongos , Neurônios/fisiologia , Sinapses/metabolismo
2.
J Neurosci ; 41(17): 3799-3807, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33741723

RESUMO

The release of small extracellular vesicles (sEVs) has recently been reported, but knowledge of their function in neuron development remains limited. Using LC-MS/MS, we found that sEVs released from developing cortical neurons in vitro obtained from mice of both sexes were enriched in cytoplasm, exosome, and protein-binding and DNA/RNA-binding pathways. The latter included HDAC2, which was of particular interest, because HDAC2 regulates spine development, and populations of neurons expressing different levels of HDAC2 co-exist in vivo during the period of spine growth. Here, we found that HDAC2 levels decrease in neurons as they acquire synapses and that sEVs from HDAC2-rich neurons regulate HDAC2 signaling in HDAC2-low neurons possibly through HDAC2 transfer. This regulation led to a transcriptional decrease in HDAC2 synaptic targets and the density of excitatory synapses. These data suggest that sEVs provide inductive cell-cell signaling that coordinates the development of dendritic spines via the activation of HDAC2-dependent transcriptional programs.SIGNIFICANCE STATEMENT A role of small extracellular vesicles (sEVs; also called exosomes) in neuronal development is of particular interest, because sEVs could provide a major signaling modality between developing neurons when synapses are not fully functional or immature. However, knowledge of sEVs on neuron, and more precisely spine development, is limited. We provide several lines of evidence that sEVs released from developing cortical neurons regulate the development of dendritic spines via the regulation of HDAC2 signaling. This paracrine communication is temporally restricted during development because of the age-dependent decrease in sEV release as neurons mature and acquire spines.


Assuntos
Espinhas Dendríticas/fisiologia , Espaço Extracelular/fisiologia , Histona Desacetilase 2/genética , Histona Desacetilase 2/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Citoplasma/metabolismo , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Cultura Primária de Células , Proteômica , Sinapses/fisiologia
4.
Liver Int ; 39(10): 1801-1817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31286675

RESUMO

Extracellular vesicles are membrane fragments that can be produced by all cell types. Interactions between extracellular vesicles and various liver cells constitute an emerging field in hepatology and recent evidences have established a role for extracellular vesicles in various liver diseases and physiological processes. Extracellular vesicles originating from liver cells are implicated in intercellular communication and fluctuations of specific circulating extracellular vesicles could constitute new diagnostic tools. In contrast, extracellular vesicles derived from progenitor cells interact with hepatocytes or non-parenchymal cells, thereby protecting the liver from various injuries and promoting liver regeneration. Our review focuses on recent developments investigating the role of various types of extracellular vesicles in acute and chronic liver diseases as well as their potential use as biomarkers and therapeutic tools.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Hepatopatias/metabolismo , Regeneração , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos , Hepatopatias/terapia
5.
Mol Cell Oncol ; 5(3): e1445941, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250898

RESUMO

Autophagy-related-5 (Atg5) and Autophagy-related-16-Like-1 (Atg16L1) canonically participate in autophagy. Recent research demonstrates that apart from this, they also control production of extracellular vesicles called exosomes by regulating acidification of late endosomes. Atg5-mediated exosome production increased migration and metastasis of breast cancer cells suggesting exosomes may perform some functions ascribed to autophagy.

6.
Cell Mol Life Sci ; 75(4): 757-773, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28956068

RESUMO

Amyloid beta peptide (Aß), the main component of senile plaques of Alzheimer's disease brains, is produced by sequential cleavage of amyloid precursor protein (APP) and of its C-terminal fragments (CTFs). An unanswered question is how amyloidogenic peptides spread throughout the brain during the course of the disease. Here, we show that small lipid vesicles called exosomes, secreted in the extracellular milieu by cortical neurons, carry endogenous APP and are strikingly enriched in CTF-α and the newly characterized CTF-η. Exosomes from N2a cells expressing human APP with the autosomal dominant Swedish mutation contain Aß peptides as well as CTF-α and CTF-η, while those from cells expressing the non-mutated form of APP only contain CTF-α and CTF-η. APP and CTFs are sorted into a subset of exosomes which lack the tetraspanin CD63 and specifically bind to dendrites of neurons, unlike exosomes carrying CD63 which bind to both neurons and glial cells. Thus, neuroblastoma cells secrete distinct populations of exosomes carrying different cargoes and targeting specific cell types. APP-carrying exosomes can be endocytosed by receiving cells, allowing the processing of APP acquired by exosomes to give rise to the APP intracellular domain (AICD). Thus, our results show for the first time that neuronal exosomes may indeed act as vehicles for the intercellular transport of APP and its catabolites.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Endocitose , Exossomos/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Endocitose/fisiologia , Exossomos/patologia , Feminino , Humanos , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Gravidez , Transporte Proteico , Ratos
7.
Semin Cell Dev Biol ; 74: 40-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28811263

RESUMO

The endosomal sorting complex required for transport (ESCRT) is made of subcomplexes (ESCRT 0-III), crucial to membrane remodelling at endosomes, nuclear envelope and cell surface. ESCRT-III shapes membranes and in most cases cooperates with the ATPase VPS4 to mediate fission of membrane necks from the inside. The first ESCRT complexes mainly serve to catalyse the formation of ESCRT-III but can be bypassed by accessory proteins like the Alg-2 interacting protein-X (ALIX). In the nervous system, ALIX/ESCRT controls the survival of embryonic neural progenitors and later on the outgrowth and pruning of axons and dendrites, all necessary steps to establish a functional brain. In the adult brain, ESCRTs allow the endosomal turn over of synaptic vesicle proteins while stable ESCRT complexes might serve as scaffolds for the postsynaptic parts. The necessity of ESCRT for the harmonious function of the brain has its pathological counterpart, the mutations in CHMP2B of ESCRT-III giving rise to several neurodegenerative diseases.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Sistema Nervoso/metabolismo , Animais , Transporte Biológico , Humanos
8.
Dev Cell ; 43(6): 716-730.e7, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257951

RESUMO

Autophagy and autophagy-related genes (Atg) have been attributed prominent roles in tumorigenesis, tumor growth, and metastasis. Extracellular vesicles called exosomes are also implicated in cancer metastasis. Here, we demonstrate that exosome production is strongly reduced in cells lacking Atg5 and Atg16L1, but this is independent of Atg7 and canonical autophagy. Atg5 specifically decreases acidification of late endosomes where exosomes are produced, disrupting the acidifying V1V0-ATPase by removing a regulatory component, ATP6V1E1, into exosomes. The effect of Atg5 on exosome production promotes the migration and in vivo metastasis of orthotopic breast cancer cells. These findings uncover mechanisms controlling exosome release and identify means by which autophagy-related genes can contribute to metastasis in autophagy-independent pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , ATPases Vacuolares Próton-Translocadoras/genética
9.
J Biol Chem ; 292(48): 19873-19889, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021256

RESUMO

Amyloid plaques, a neuropathological hallmark of Alzheimer's disease, are largely composed of amyloid ß (Aß) peptide, derived from cleavage of amyloid precursor protein (APP) by ß- and γ-secretases. The endosome is increasingly recognized as an important crossroad for APP and these secretases, with major implications for APP processing and amyloidogenesis. Among various post-translational modifications affecting APP accumulation, ubiquitination of cytodomain lysines may represent a key signal controlling APP endosomal sorting. Here, we show that substitution of APP C-terminal lysines with arginine disrupts APP ubiquitination and that an increase in the number of substituted lysines tends to increase APP metabolism. An APP mutant lacking all C-terminal lysines underwent the most pronounced increase in processing, leading to accumulation of both secreted and intracellular Aß40. Artificial APP ubiquitination with rapalog-mediated proximity inducers reduced Aß40 generation. A lack of APP C-terminal lysines caused APP redistribution from endosomal intraluminal vesicles (ILVs) to the endosomal limiting membrane, with a subsequent decrease in APP C-terminal fragment (CTF) content in secreted exosomes, but had minimal effects on APP lysosomal degradation. Both the increases in secreted and intracellular Aß40 were abolished by depletion of presenilin 2 (PSEN2), recently shown to be enriched on the endosomal limiting membrane compared with PSEN1. Our findings demonstrate that ubiquitin can act as a signal at five cytodomain-located lysines for endosomal sorting of APP. They further suggest that disruption of APP endosomal sorting reduces its sequestration in ILVs and results in PSEN2-mediated processing of a larger pool of APP-CTF on the endosomal membrane.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-2/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Arginina/genética , Linhagem Celular , Endossomos/metabolismo , Humanos , Lisina/genética , Mutação , Proteólise , Ubiquitinação
10.
Sci Rep ; 7: 44767, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322231

RESUMO

Alix (ALG-2 interacting protein X) drives deformation and fission of endosomal and cell surface membranes and thereby intervenes in diverse biological processes including cell proliferation and apoptosis. Using embryonic fibroblasts of Alix knock-out mice, we recently demonstrated that Alix is required for clathrin-independent endocytosis. Here we show that mice lacking Alix suffer from severe reduction in the volume of the brain which affects equally all regions examined. The cerebral cortex of adult animals shows normal layering but is reduced in both medio-lateral length and thickness. Alix controls brain size by regulating its expansion during two distinct developmental stages. Indeed, embryonic surface expansion of the Alix ko cortex is reduced because of the loss of neural progenitors during a transient phase of apoptosis occurring between E11.5 and E12.5. Subsequent development of the Alix ko cortex occurs normally until birth, when Alix is again required for the post-natal radial expansion of the cortex through its capacity to allow proper neurite outgrowth. The need of Alix for both survival of neural progenitor cells and neurite outgrowth is correlated with its role in clathrin-independent endocytosis in neural progenitors and at growth cones. Thus Alix-dependent, clathrin independent endocytosis is essential for controlling brain size.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Contagem de Células , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/metabolismo , Embrião de Mamíferos/metabolismo , Endocitose , Fatores de Crescimento de Fibroblastos/metabolismo , Cones de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcefalia/metabolismo , Microcefalia/patologia , Células-Tronco Neurais/metabolismo , Tamanho do Órgão , Transdução de Sinais
11.
Methods Mol Biol ; 1545: 129-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943211

RESUMO

Exosomes are vesicles released by most cells into their environment upon fusion of multivesicular endosomes with the plasma membrane. Exosomes are vesicles of 60-100 nm in diameter, floating in sucrose at a density of ~1.15 g/mL and carrying a number of marker proteins such as Alix, Tsg101, and Flotillin-1. We use dissociated cortical neurons cultured for around two weeks as exosome-releasing cells. In these conditions, neurons make mature synapses and form networks that can be activated by physiological stimuli. Here, we describe methods to culture differentiated cortical neurons, induce exosome release by increasing glutamatergic synapse activity, and purify exosomes by differential centrifugations followed by density separation using sucrose gradients. These protocols allow purification of neuronal exosomes released within minutes of activation of glutamatergic synapses.


Assuntos
Fracionamento Celular , Córtex Cerebral/citologia , Exossomos/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Fracionamento Celular/métodos , Células Cultivadas , Glutamatos/metabolismo , Ratos
12.
Sci Rep ; 6: 26986, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244115

RESUMO

The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.


Assuntos
Aciltransferases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores de Interleucina-2/metabolismo , Aciltransferases/genética , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Toxina da Cólera/metabolismo , Toxina da Cólera/toxicidade , Clatrina/genética , Clatrina/metabolismo , Embrião de Mamíferos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Receptores de Interleucina-2/genética , Transdução de Sinais
13.
Hum Mol Genet ; 25(15): 3341-3360, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329763

RESUMO

Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Comportamento Animal , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Demência Frontotemporal/metabolismo , Regulação da Expressão Gênica , Íntrons , Mutação , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Axônios/metabolismo , Axônios/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
14.
J Neurosci ; 35(7): 3155-73, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698751

RESUMO

The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/deficiência , Proteínas do Tecido Nervoso/deficiência , Sinapses/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Dendritos/metabolismo , Dendritos/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Hipocampo/citologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Mutação/genética , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/ultraestrutura , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Proteína Vermelha Fluorescente
15.
J Extracell Vesicles ; 3: 24722, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398455

RESUMO

Exosomes are nano-sized vesicles of endocytic origin released into the extracellular space upon fusion of multivesicular bodies with the plasma membrane. Exosomes represent a novel mechanism of cell-cell communication allowing direct transfer of proteins, lipids and RNAs. In the nervous system, both glial and neuronal cells secrete exosomes in a way regulated by glutamate. It has been hypothesized that exosomes can be used for interneuronal communication implying that neuronal exosomes should bind to other neurons with some kind of specificity. Here, dissociated hippocampal cells were used to compare the specificity of binding of exosomes secreted by neuroblastoma cells to that of exosomes secreted by cortical neurons. We found that exosomes from neuroblastoma cells bind indiscriminately to neurons and glial cells and could be endocytosed preferentially by glial cells. In contrast, exosomes secreted from stimulated cortical neurons bound to and were endocytosed only by neurons. Thus, our results demonstrate for the first time that exosomes released upon synaptic activation do not bind to glial cells but selectively to other neurons suggesting that they can underlie a novel aspect of interneuronal communication.

16.
Biochem Soc Trans ; 41(1): 241-4, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356290

RESUMO

Exosomes are small extracellular vesicles which stem from endosomes fusing with the plasma membrane; they contain lipids, proteins and RNAs that are able to modify receiving cells. Functioning of the brain relies on synapses, and certain patterns of synaptic activity can change the strength of responses at sparse groups of synapses, to modulate circuits underlying associations and memory. These local changes of the synaptic physiology in one neuron driven by another have, so far, been explained by classical signal transduction modulating transcription, translation and post-translational modifications. We have accumulated in vitro evidence that exosomes released by neurons in a way depending on synaptic activity can be recaptured by other neurons. Some lipids, proteins and RNAs contained in exosomes secreted by emitting neurons could directly modify signal transduction and protein expression in receiving cells. Exosomes may be an ideal mechanism for anterograde and retrograde information transfer across synapses underlying local changes in synaptic plasticity. Exosomes might also participate in the spreading across the nervous system of pathological proteins such as PrPSc (abnormal disease-specific conformation of prion protein), APP (amyloid precursor protein) fragments, phosphorylated tau or α-synuclein.


Assuntos
Comunicação Celular , Exossomos/fisiologia , Neurônios/fisiologia , Humanos , Doenças Neurodegenerativas/fisiopatologia , Plasticidade Neuronal , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Transcrição Gênica
17.
Proc Natl Acad Sci U S A ; 109(26): 10510-5, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22679284

RESUMO

Patched (Ptc), the main receptor for Sonic Hedgehog, is a tumor suppressor. Ptc has been shown to be a dependence receptor, and as such triggers apoptosis in the absence of its ligand. This apoptosis induction occurs through the recruitment by the Ptc intracellular domain of a caspase-activating complex, which includes the adaptor proteins DRAL and TUCAN, and the apical caspase-9. We show here that this caspase-activating complex also includes the E3 ubiquitin ligase NEDD4. We demonstrate that Ptc-mediated apoptosis and Ptc-induced caspase-9 activation require NEDD4. We show that Ptc, but not Bax, the prototypical inducer of the intrinsic cell-death pathway, triggers polyubiquitination of caspase-9. Moreover, a caspase-9 mutant that could not be ubiquitinated failed to mediate Ptc-induced apoptosis. Taken together, these data support the view that the Ptc dependence receptor specifically allows the activation of caspase-9 via its ubiquitination, which occurs via the recruitment by Ptc of NEDD4.


Assuntos
Apoptose , Caspase 3/metabolismo , Linhagem Celular , Humanos , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase em Tempo Real , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
18.
Front Physiol ; 3: 145, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654762

RESUMO

Exosomes are small extracellular vesicles, which stem from endosomes fusing with the plasma membrane, and can be recaptured by receiving cells. They contain lipids, proteins, and RNAs able to modify the physiology of receiving cells. Functioning of the brain relies on intercellular communication between neural cells. These communications can modulate the strength of responses at sparse groups of specific synapses, to modulate circuits underlying associations and memory. Expression of new genes must then follow to stabilize the long-term modifications of the synaptic response. Local changes of the physiology of synapses from one neuron driven by another, have so far been explained by classical signal transduction to modulate transcription, translation, and posttranslational modifications. In vitro evidence now demonstrates that exosomes are released by neurons in a way depending on synaptic activity; these exosomes can be retaken by other neurons suggesting a novel way for inter-neuronal communication. The efficacy of inter-neuronal transfer of biochemical information allowed by exosomes would be far superior to that of direct cell-to-cell contacts or secreted soluble factors. Indeed, lipids, proteins, and RNAs contained in exosomes secreted by emitting neurons could directly modify signal transduction and protein expression in receiving cells. Exosomes could thus represent an ideal mechanism for inter-neuronal transfer of information allowing anterograde and retrograde signaling across synapses necessary for plasticity. They might also allow spreading across the nervous system of pathological proteins like PrPsc, APP fragments, phosphorylated Tau, or Alpha-synuclein.

19.
J Biol Chem ; 286(46): 40276-86, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21926173

RESUMO

The endosomal sorting complexes required for transport (ESCRT-0-III) allow membrane budding and fission away from the cytosol. This machinery is used during multivesicular endosome biogenesis, cytokinesis, and budding of some enveloped viruses. Membrane fission is catalyzed by ESCRT-III complexes made of polymers of charged multivesicular body proteins (CHMPs) and by the AAA-type ATPase VPS4. How and which of the ESCRT-III subunits sustain membrane fission from the cytoplasmic surface remain uncertain. In vitro, CHMP2 and CHMP3 recombinant proteins polymerize into tubular helical structures, which were hypothesized to drive vesicle fission. However, this model awaits the demonstration that such structures exist and can deform membranes in cellulo. Here, we show that depletion of VPS4 induces specific accumulation of endogenous CHMP2B at the plasma membrane. Unlike other CHMPs, overexpressed full-length CHMP2B polymerizes into long, rigid tubes that protrude out of the cell. CHMP4s relocalize at the base of the tubes, the formation of which depends on VPS4. Cryo-EM of the CHMP2B membrane tubes demonstrates that CHMP2B polymerizes into a tightly packed helical lattice, in close association with the inner leaflet of the membrane tube. This association is tight enough to deform the lipid bilayer in cases where the tubular CHMP2B helix varies in diameter or is closed by domes. Thus, our observation that CHMP2B polymerization scaffolds membranes in vivo represents a first step toward demonstrating its structural role during outward membrane deformation.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Multimerização Proteica/fisiologia , Membrana Celular/química , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/química , Endossomos/genética , Células HeLa , Humanos , Estrutura Quaternária de Proteína
20.
Mol Cell Neurosci ; 46(2): 409-18, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21111824

RESUMO

Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane of endosomal intermediates called multivesicular bodies. They represent ways for discarding proteins and metabolites and also for intercellular transfer of proteins and RNAs. In the nervous system, it has been hypothesized that exosomes might be involved in the normal physiology of the synapse and possibly allow the trans-synaptic propagation of pathogenic proteins throughout the tissue. As a first step to validate this concept, we used biochemical and morphological approaches to demonstrate that mature cortical neurons in culture do indeed secrete exosomes. Using electron microscopy, we observed exosomes being released from somato-dendritic compartments. The endosomal origin of exosomes was demonstrated by showing that the C-terminal domain of tetanus toxin specifically endocytosed by neurons and accumulating inside multivesicular bodies, is released in the extracellular medium in association with exosomes. Finally, we found that exosomal release is modulated by glutamatergic synaptic activity, suggesting that this process might be part of normal synaptic physiology. Thus, our study paves the way towards the demonstration that exosomes take part in the physiology of the normal and pathological nervous system.


Assuntos
Exossomos/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Exossomos/ultraestrutura , Glutamina/metabolismo , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Ratos , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...