Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 608(7924): 704-711, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002488

RESUMO

Although batteries fitted with a metal negative electrode are attractive for their higher energy density and lower complexity, the latter making them more easily recyclable, the threat of cell shorting by dendrites has stalled deployment of the technology1,2. Here we disclose a bidirectional, rapidly charging aluminium-chalcogen battery operating with a molten-salt electrolyte composed of NaCl-KCl-AlCl3. Formulated with high levels of AlCl3, these chloroaluminate melts contain catenated AlnCl3n+1- species, for example, Al2Cl7-, Al3Cl10- and Al4Cl13-, which with their Al-Cl-Al linkages confer facile Al3+ desolvation kinetics resulting in high faradaic exchange currents, to form the foundation for high-rate charging of the battery. This chemistry is distinguished from other aluminium batteries in the choice of a positive elemental-chalcogen electrode as opposed to various low-capacity compound formulations3-6, and in the choice of a molten-salt electrolyte as opposed to room-temperature ionic liquids that induce high polarization7-12. We show that the multi-step conversion pathway between aluminium and chalcogen allows rapid charging at up to 200C, and the battery endures hundreds of cycles at very high charging rates without aluminium dendrite formation. Importantly for scalability, the cell-level cost of the aluminium-sulfur battery is projected to be less than one-sixth that of current lithium-ion technologies. Composed of earth-abundant elements that can be ethically sourced and operated at moderately elevated temperatures just above the boiling point of water, this chemistry has all the requisites of a low-cost, rechargeable, fire-resistant, recyclable battery.

2.
Nat Commun ; 10(1): 5772, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852891

RESUMO

Crystalline-silicon solar cells have dominated the photovoltaics market for the past several decades. One of the long standing challenges is the large contribution of silicon wafer cost to the overall module cost. Here, we demonstrate a simple process for making high-purity solar-grade silicon films directly from silicon dioxide via a one-step electrodeposition process in molten salt for possible photovoltaic applications. High-purity silicon films can be deposited with tunable film thickness and doping type by varying the electrodeposition conditions. These electrodeposited silicon films show about 40 to 50% of photocurrent density of a commercial silicon wafer by photoelectrochemical measurements and the highest power conversion efficiency is 3.1% as a solar cell. Compared to the conventional manufacturing process for solar grade silicon wafer production, this approach greatly reduces the capital cost and energy consumption, providing a promising strategy for low-cost silicon solar cells production.

3.
Nat Commun ; 7: 12584, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553525

RESUMO

Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

4.
Nat Commun ; 7: 10999, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001915

RESUMO

Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

5.
Nature ; 514(7522): 348-50, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25252975

RESUMO

The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding puts us on a desirable cost trajectory, this approach may well be more broadly applicable to other battery chemistries.

6.
J Vis Exp ; (78)2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23963203

RESUMO

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Cátions Monovalentes/química
7.
Nature ; 497(7449): 353-6, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23657254

RESUMO

Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock, and compared with traditional methods of extractive metallurgy offers both a substantial simplification of the process and a significant reduction in energy consumption. MOE is also considered a promising route for mitigation of CO2 emissions in steelmaking, production of metals free of carbon, and generation of oxygen for extra-terrestrial exploration. Until now, MOE has been demonstrated using anode materials that are consumable (graphite for use with ferro-alloys and titanium) or unaffordable for terrestrial applications (iridium for use with iron). To enable metal production without process carbon, MOE requires an anode material that resists depletion while sustaining oxygen evolution. The challenges for iron production are threefold. First, the process temperature is in excess of 1,538 degrees Celsius (ref. 10). Second, under anodic polarization most metals inevitably corrode in such conditions. Third, iron oxide undergoes spontaneous reduction on contact with most refractory metals and even carbon. Here we show that anodes comprising chromium-based alloys exhibit limited consumption during iron extraction and oxygen evolution by MOE. The anode stability is due to the formation of an electronically conductive solid solution of chromium(iii) and aluminium oxides in the corundum structure. These findings make practicable larger-scale evaluation of MOE for the production of steel, and potentially provide a key material component enabling mitigation of greenhouse-gas emissions while producing metal of superior metallurgical quality.


Assuntos
Conservação de Recursos Energéticos/métodos , Eletrólise/instrumentação , Óxidos/química , Oxigênio/química , Aço/química , Ligas/química , Alumínio/química , Cromo/química , Eletrodos , Eletrólitos/química , Grafite/química , Efeito Estufa/prevenção & controle , Ferro/química , Metais/química , Aço/provisão & distribuição , Temperatura
8.
J Am Chem Soc ; 135(22): 8260-5, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23621449

RESUMO

The thermodynamic properties of multiple liquid alloys with strong negative deviation from ideality were successfully modeled by the molecular interaction volume model (MIVM). The modeled partial Gibbs free energy of calcium in Ca-Ag, Ca-In, Ca-Pb, Ca-Sn, Ca-Tl, and Ca-Zn at 800 °C was within 1.5 kJ/mol of the existing experimental data. The partial Gibbs free energy of calcium in Ca-Bi liquid alloys at 600 °C was predicted within 1.6 kJ/mol (or 1%) by the MIVM from experimental data at 800 °C. For the first time, the MIVM was applied to a ternary system far from ideality, Ca-Sb-Pb. The partial Gibbs free energy of Ca in six Ca-Pb-Sb alloys was determined by emf measurements in a cell configured as Ca(s)|CaF2(s)|Ca-Sb-Pb, over the temperature range of 500-830 °C. These values were 2% (or 5 kJ/mol) more negative than those predicted by the MIVM using experimental data for the Ca-Pb, Ca-Sb, and Pb-Sb binary alloys. This difference was attributed to the inability of the MIVM to account for interactions between the first nearest neighbors of Ca, Pb and Sb in the ternary Ca-Sb-Pb alloy.

10.
J Am Chem Soc ; 134(4): 1895-7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22224420

RESUMO

Batteries are an attractive option for grid-scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 °C) magnesium-antimony (Mg||Sb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCl(2)-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use of low-cost materials results in a promising technology for stationary energy storage applications.


Assuntos
Ligas/química , Antimônio/química , Fontes de Energia Elétrica , Magnésio/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície , Temperatura
11.
J Am Chem Soc ; 133(49): 19971-5, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22035469

RESUMO

The electrochemical behavior of ZnTe and CdTe compound semiconductors dissolved in molten ZnCl(2) and equimolar CdCl(2)-KCl, respectively, was examined. In these melts dissolved Te is present as the divalent telluride anion, Te(2-), which was found able to be converted to elemental metal by electrochemical oxidation at the anode. ZnTe-ZnCl(2) melts were studied at 500 °C by standard electrochemical techniques. On the basis of these results, electrolysis was performed, resulting in the simultaneous extraction of phase-pure liquid Zn at the cathode and phase-pure liquid Te at the anode. This new process, involving the simultaneous deposition of liquid metals at electrodes of opposite polarity, is termed herein as ambipolar electrolysis. A melt consisting of CdTe dissolved in equimolar CdCl(2)-KCl was processed by ambipolar electrolysis, resulting in the production of liquid Cd at the cathode and liquid Te at the anode. Ambipolar electrolysis could enable new approaches to recycling compound semiconductors and semiconductor devices, such as CdTe solar cells.

12.
Langmuir ; 23(16): 8515-21, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17602505

RESUMO

Using the layer-by-layer (LbL) assembly technique, we create a polymer-clay structure from a unique combination of LbL materials: poly(ethylene imine), Laponite clay, and poly(ethylene oxide). This trilayer LbL structure is assembled using a combination of hydrogen bonding and electrostatic interactions. The films were characterized using ellipsometry, profilometry, X-ray photon spectroscopy, atomic force microscopy, scanning electron microscopy, wide-angle X-ray diffraction, grazing-incidence small-angle X-ray scattering, and electrochemical impedance spectroscopy (EIS). We observe a layered, anisotropic structure, which resulted in in-plane ion transport 100 times faster than cross-plane at 0% relative humidity. This study represents a first application of EIS in determining anisotropic ion transport in LbL assemblies and its correlation to structural anisotropy.


Assuntos
Silicatos de Alumínio/química , Iminas/química , Nanocompostos/química , Polietilenoglicóis/química , Polietilenos/química , Anisotropia , Argila , Eletroquímica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...