Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(50): 48394-48404, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144061

RESUMO

The novel metal-organic framework [(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF, H2bdc-terephthalic acid, DMF-N,N-dimethylformamide) was synthesized by a simple solvothermal method. Ce-MOF has 3D connectivity of bcu type with a dinuclear fragment connected with eight neighbors, while three types of guest species are residing in its pores: water, DMF, and dimethylammonium cations. Dimethylamine was demonstrated to have a decisive templating effect on the formation of Ce-MOF, as its deliberate addition to the solvothermal reaction allows the reproducible synthesis of the new framework. Otherwise, the previously reported MOF Ce5(bdc)7.5(DMF)4 (Ce5) or its composite with nano-CeO2 (CeO2@Ce5) was obtained. Various Ce carboxylate precursors and synthetic conditions were explored to evidence the major stability of Ce-MOF and Ce5 within the Ce carboxylate-H2bdc-DMF system. The choice of precursor impacts the surface area of Ce-MOF and thus its reactivity in an oxidative atmosphere. The in situ PXRD and TG-DTA-MS study of Ce-MOF in a nonoxidative atmosphere demonstrates that it eliminates H2O and DMF along with (CH3)2NH guest species in two distinct stages at 70 and 250 °C, respectively, yielding [Ce2(bdc)3(H2bdc)]. The H2bdc molecule is removed at 350 °C with the formation of novel modification of Ce2(bdc)3, which is stable at least up to 450 °C. According to the total X-ray scattering study with pair distribution function analysis, the most pronounced local structure transformation occurs upon departure of DMF and (CH3)2NH guest species, which is in line with the in situ PXRD experiment. In an oxidative atmosphere, Ce-MOF undergoes combustion to CeO2 at a temperature as low as 390 °C. MOF-derived CeO2 from Ce-MOF, Ce5, and CeO2@Ce5 exhibits catalytic activity in the CO oxidation reaction.

2.
Angew Chem Int Ed Engl ; 62(18): e202301297, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36855938

RESUMO

Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.

3.
J Am Chem Soc ; 145(9): 5410-5421, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825993

RESUMO

We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.

4.
Angew Chem Int Ed Engl ; 62(1): e202214032, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349828

RESUMO

Operando X-ray absorption spectroscopy identified that the concentration of Fe2+ species in the working state-of-the-art Pt-FeOx catalysts quantitatively correlates to their preferential carbon monoxide oxidation steady-state reaction rate at ambient temperature. Deactivation of such catalysts with time on stream originates from irreversible oxidation of active Fe2+ sites. The active Fe2+ species are presumably Fe+2 O-2 clusters in contact with platinum nanoparticles; they coexist with spectator trivalent oxidic iron (Fe3+ ) and metallic iron (Fe0 ) partially alloyed with platinum. The concentration of active sites and, therefore, the catalyst activity strongly depends on the pretreatment conditions. Fe2+ is the resting state of the active sites in the preferential carbon monoxide oxidation cycle.

5.
J Am Chem Soc ; 144(37): 16778-16791, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36054824

RESUMO

The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.

6.
J Phys Chem Lett ; 13(15): 3382-3391, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404613

RESUMO

A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...