Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2309620, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294996

RESUMO

2D A 2 III B 3 VI ${\mathrm{A}}_2^{{\mathrm{III}}}{\mathrm{B}}_3^{{\mathrm{VI}}}$ compounds (A = Al, Ga, In, and B = S, Se, and Te) with intrinsic structural defects offer significant opportunities for high-performance and functional devices. However, obtaining 2D atomic-thin nanoplates with non-layered structure on SiO2 /Si substrate at low temperatures is rare, which hinders the study of their properties and applications at atomic-thin thickness limits. In this study, the synthesis of ultrathin, non-layered α-In2 Te3  nanoplates is demonstrated using a BiOCl-assisted chemical vapor deposition method at a temperature below 350 °C on SiO2 /Si substrate. Comprehensive characterization results confirm the high-quality single crystal is the low-temperature cubic phase α-In2 Te3 , possessing a noncentrosymmetric defected ZnS structure with good second harmonic generation. Moreover, α-In2 Te3 is revealed to be a p-type semiconductor with a direct and narrow bandgap value of 0.76 eV. The field effect transistor exhibits a high mobility of 18 cm2 V-1  s-1 , and the photodetector demonstrates stable photoswitching behavior within a broadband photoresponse from 405 to 1064 nm, with a satisfactory response time of τrise = 1 ms. Notably, the α-In2 Te3 nanoplates exhibit good stability against ambient environments. Together, these findings establish α-In2 Te3 nanoplates as promising candidates for next-generation high-performance photonics and electronics.

2.
Nat Commun ; 14(1): 304, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658123

RESUMO

Most of the current methods for the synthesis of two-dimensional materials (2DMs) require temperatures not compatible with traditional back-end-of-line (BEOL) processes in semiconductor industry (450 °C). Here, we report a general BiOCl-assisted chemical vapor deposition (CVD) approach for the low-temperature synthesis of 27 ultrathin 2DMs. In particular, by mixing BiOCl with selected metal powders to produce volatile intermediates, we show that ultrathin 2DMs can be produced at 280-500 °C, which are ~200-300 °C lower than the temperatures required for salt-assisted CVD processes. In-depth characterizations and theoretical calculations reveal the low-temperature processes promoting 2D growth and the oxygen-inhibited synthetic mechanism ensuring the formation of ultrathin nonlayered 2DMs. We demonstrate that the resulting 2DMs exhibit electrical, magnetic and optoelectronic properties comparable to those of 2DMs grown at much higher temperatures. The general low-temperature preparation of ultrathin 2DMs defines a rich material platform for exploring exotic physics and facile BEOL integration in semiconductor industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...