Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612647

RESUMO

Impaired healing wounds do not proceed through the normal healing processes in a timely and orderly manner, and while they do eventually heal, their healing is not optimal. Chronic wounds, on the other hand, remain unhealed for weeks or months. In the US alone, chronic wounds impact ~8.5 million people and cost ~USD 28-90 billion per year, not accounting for the psychological and physical pain and emotional suffering that patients endure. These numbers are only expected to rise in the future as the elderly populations and the incidence of comorbidities such as diabetes, hypertension, and obesity increase. Over the last few decades, scientists have used a variety of approaches to treat chronic wounds, but unfortunately, to date, there is no effective treatment. Indeed, while there are thousands of drugs to combat cancer, there is only one single drug approved for the treatment of chronic wounds. This is in part because wound healing is a very complex process involving many phases that must occur sequentially and in a timely manner. Furthermore, models that fully mimic human chronic wounds have not been developed. In this review, we assess various models currently being used to study the biology of impaired healing and chronic non-healing wounds. Among them, this paper also highlights one model which shows significant promise; this model uses aged and obese db/db-/- mice and the chronic wounds that develop show characteristics of human chronic wounds that include increased oxidative stress, chronic inflammation, damaged microvasculature, abnormal collagen matrix deposition, a lack of re-epithelialization, and the spontaneous development of multi-bacterial biofilm. We also discuss how important it is that we continue to develop chronic wound models that more closely mimic those of humans and that can be used to test potential treatments to heal chronic wounds.


Assuntos
Ansiedade , Cicatrização , Animais , Idoso , Camundongos , Humanos , Biofilmes , Emoções , Modelos Animais , Obesidade
2.
Wound Repair Regen ; 31(1): 6-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153666

RESUMO

The process of wound healing is critical to maintaining homeostasis after injury. Although a considerable amount has been learned about this complex process, much remains unknown. Whereas, studies with human volunteers are ideal given the unique nature of the human skin anatomy and immune system, the lack of such clinical access has made animal models prime candidates for use in preclinical studies. This review aims to discuss the strengths and limitations of the commonly used mammalian species in wound healing studies: murine, rabbit and porcine. Thereafter, a survey of models of various acute wounds such as cutaneous, ear, and implant are presented and representative studies that use them are described. This review is intended to acquaint readers with the vast spectrum of models available, each of which has a distinct utility. At the same time, it highlights the importance of utilising clinical samples to complement investigations conducted in animal models. Through this strategy, it is hoped that forthcoming research may be more reflective of the acute wound healing process as it occurs in humans.


Assuntos
Lesões dos Tecidos Moles , Cicatrização , Camundongos , Suínos , Humanos , Coelhos , Animais , Pele/lesões , Modelos Animais , Modelos Animais de Doenças , Mamíferos
3.
Wound Repair Regen ; 29(6): 881-898, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536049

RESUMO

Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.


Assuntos
Diabetes Mellitus Experimental , Cicatrização , Animais , Tecido de Granulação , Camundongos , Estresse Oxidativo , Biologia de Sistemas , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...