Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114312, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735345

RESUMO

BACKGROUND: Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS: In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS: The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 µg/ml is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS: The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer.

2.
Anal Chim Acta ; 1189: 339204, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815043

RESUMO

Electrochemical sensing methods monitor biomolecules because of their specificity, rapid response, lower cost, and automation. Hemoglobin is an abundant protein in the human body and is correlated with various physiological processes. Levels of hemoglobin in blood are associated with anemia in pregnant women. In this research, a non-enzymatic sensor based on NiTe nanorods is developed for the detection and quantification of hemoglobin (Hb) from anemic pregnant patients. NiTe nanorods are synthesized by the single-step method. After characterizing the material, sensing parameters such as the effect of scan rate, pH, concentration, and interferences are optimized using standard hemoglobin samples. Linearity, the limit of detection (LOD), and the limit of quantification (LOQ) for NiTe nanorods are 0.99698, 0.012 nM, and 0.04 nM, respectively. Stability is measured by cyclic chronoamperometry (12 h) and voltammetry (100 cycles). Recovery of hemoglobin from blood samples is in the range of 63-90%. NiTe nanorods quantitatively determine hemoglobin from the blood samples of anemic pregnant women.


Assuntos
Anemia , Nanotubos , Anemia/diagnóstico , Técnicas Eletroquímicas , Feminino , Hemoglobinas/análise , Humanos , Gravidez , Gestantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...